Содержание
Идея создания беспроводной сети мобильной связи появилась более ста лет назад. Активная деятельность в этом направлении велась на Западе, но СССР не отставал от своих «коллег по цеху». Однако несмотря на многолетние разработки первая вариация сотового телефона появилась только в начале 70-х годов, когда в США был создан первый сотовый телефон, выпущенный компанией Motorola.
На сегодняшний день практически у каждого жителя планеты есть мобильные устройства, работающие на основе беспроводной связи. Только за последние сорок лет сменилось четыре поколения сотовой связи, сегодня активно развивается пятое (новейшее) поколение 5G, внедрить которое планируется в 2020 году.
В данной статье в общих чертах будет представлена информация по каждому поколению беспроводной сотовой связи.
Стандарт сотовой связи 1G
Это аналоговый стандарт с огромным количеством недостатков, заключающихся в плохом качестве сигнала, отсутствием как таковой совместимости с технологиями.
- Самыми распространенными стандартами были:
- AMPS — применялась только в Соединенных Штатах Америки, на территории Австралии, Канаде и в некоторых странах Южной Америки;
- TACS — применялась преимущественно в развитых европейских странах (Великобритания, Испания, Италия и т.д.);
- NMT — действовала в северных европейских странах — в Скандинавии;
- TZ-801 — исключительно японская сеть.
Коммерческое применение аналоговым сетям было найдено в Японии, далее запуск выполнился в скандинавских странах. Позже всех коммерческое решение для применения и объединения стандартов было найдено в США.
Стандарт мобильной связи 2G
Созданная в 1982 году в Европе рабочая группа, получившая название GSM (спецгруппа по подвижной связи) приступила к изучению и последующей разработке наземной системы связи для комплексного использования.
«Эстафету» в разработке и изучении к концу 80-х годов принял Европейский институт стандартов в телекоммуникации. Именно тогда аббревиатура GSM получила немного другое определение и стала именоваться как глобальная система для подвижной связи.
Коммерцизация мобильных сетей началась только в начале 90-х годов прошлого века. Основная отличительная особенность 2G от 1G — цифровая методика передачи данных, а не аналоговая. Благодаря появлению новых технологий удалось запустить сервис, позволяющий обмениваться текстовыми сообщениями (SMS) и внедрить протокол WAP, благодаря которому у абонентов появилась возможность выходить со своих мобильных устройств в Интернет. Несмотря на то, что скорость передачи мобильных данных была крайне низкой и не превышала 19,5 кбит/секунду, внедрение беспроводного протокола стало самым настоящим прорывом.
Видя небывалую заинтересованность абонентов в мобильном интернете компании стали активно разрабатывать и реализовывать в последствии сети новых поколений. Так появилась сеть 2,5G и 2,7G — это были своеобразные промежуточные варианты, приближающие пользователей к заветной сети третьего поколения.
2,5G работала на основании технологии GPRS и предполагала пакетную мобильную связь общего пользования. В сети GPRS скорость передачи данных была увеличена до 80 кбит/секунду, хотя разработчики обещали 172 кбит/секунду.
Далее появилась 2,7G, работающая на основе технологии EDGE, где скоростные показатели уже достигли 150 кбит/секунду.
Стандарт сотовой связи третьего поколения — 3G
Несмотря на то, что все работы по созданию новой технологии 3G начали вестись еще в начале девяностых, мир о сети третьего поколения узнал только в начале двухтысячных. В основе новой технологии был стандарт CDMA, разрешающий многократный доступ с кодовым разделением. Поколение 3G включало сразу пять стандартов UMTS/WCDMA, CDMA2000/IMT-MC, TD-CDMA/TD-SCDMA, DECT и UWC-136, среди которых наибольшую распространенность получили UMTS/WCDMA (этот стандарт стал самым популярным в РФ) и CDMA2000/IMT- MC.
Каждое из устройств, которое поддерживает работу в сети 3G, может беспрепятственно функционировать в стандартах двух других поколений. Тот же модем Huawei E173, предназначен для работы со вторым и третьим поколениями стандартов. Максимум, на котором может работать данная модель модема — 7,2 Мбит/секунду. Другая модель Huawei E3131 (с максимальной скоростью передачи данных 21 Мбит/секунду) работает в 2G/3G, но при этом может поддерживать работу в HSPA+, что невозможно в предыдущей модели модема.
Однако следует учитывать, что теоретическая и реальная скорости отличаются, причем не в пользу абонентов. Если в теории скорость составляет 3,6 Мбит/секунду, то на практике это будет показатель в 1-2 Мбит/секунду или если заявлено 7,2 Мбит/секунду, то в реальности скорость не превысит 3,5 Мбит/секунду.
При этом реальная скорость во многом будет зависеть от уровня сигнала, показателей загруженности базовой станции сотового оператора и других факторов. Если рассматривать вариант покупки модема 3G, то лучше всего обратить внимание на модель Huawei E3372, который может работать в сети третьего поколения с поддержкой скорости передачи данных до 42,2 Мбит/секунду, но и сети 4G (теоретическая скорость доходит до 150 Мбит/секунду).
Стандарт связи 4G — LTE и WiMax
Несмотря на то, что сеть 3G не сдает свои обороты и активно используется в России и Европе, ей на смену пришла уже хорошо себя зарекомендовавшая сеть четвертого поколения, которая полностью соответствует высоким запросам и требованиям абонентов.
Стандартами сети 4G стали LTE и WiMax
LTE — своеобразный последователь привычных нам GSM/UMTS. Изначально LTE не относился к сети нового поколения, но постепенно за счет более усовершенствованных технологий передачи данных его стали считать основным стандартом сети 4G. Максимальная скорость, с которой могут (теоретически) передаваться данные в стандарте LTE — 326,4 Мбит/секунду. Реальная скорость может колебаться и зависеть от многочисленных факторов. Самая большая ширина диапазона для частот LTE у оператора «Мегафон» (составляет 40 МГц и 300 Мбит/секунду соответственно). У остальных ширина диапазона не превышает 10 МГц, что соответствует 75 Мбит/секунду.
WiMAX — продолжает беспроводной стандарт передачи мобильных данных. На сегодняшний день существует несколько версий данного стандарта — фиксированные, которые предназначаются для находящихся в неподвижности абонентов, а также мобильные версии — для абонентов в движении.
Новейшее поколение связи — 5G
На сегодняшний день ведутся активные работы по разработке и внедрению стандартов новейшего поколения — 5G. По прогнозам пятое поколение сетей появится в 2020 году. Пока неясно, насколько высокой будет скорость передачи данных — актуальной информации на данный счет нет. Во время предварительных испытаний удалось дойти до скорости в 25 Гбит/секунду, что в разы выше существующих сегодня показателей в 3G и 4G.
Как только сеть пятого поколения будет введена в строй, абоненты получат точные сведения о теоретической и реальной скорости передачи данных.
B
Содержание:
Стандарты сотовой связи – общепринятые обозначения различных технологий, которые используются в сфере предоставления услуг мобильной связи. Некоторые стандарты из-за схожести их реализации и характеристик объединяют в группы, которые называются поколениями сотовой связи (англ. «generation» – «поколение»). Отсюда понятия 1G, 2G, 3G, 4G, то есть, первое поколение, второе поколение и т.д.
Из статьи ниже Вы узнаете об истории развития мобильных стандартов и поймёте чем отличаются между собой различные поколения и технологии обеспечения сотовой связи.
Язык: | Русский/Английский |
Формат: | HTML |
Обновлено: | 2017-11-05 |
Автор: | BestFREE.ru |
ad S2 / —>
Узнайте, какие поколения мобильной связи сегодня существуют, а также чем они отличаются между собой.
Наверняка сегодня уже практически не осталось людей, которые бы не пользовались сотовой связью. Практически у всех есть мобильные телефоны, которые, помимо средства общения, могут выступать в роли полноценных устройств для выполнения различных прикладных задач. В частности, популярной сферой применения является Интернет-сёрфинг.
И вот здесь начинается самое интересное… Если с голосовой связью дела везде обстоят практически одинаково, то в плане доступа ко Всемирной Сети всё не так просто. Здесь обычно всплывают громкие рекламные лозунги, рекламирующие какой-то 3G, высокоскоростной доступ и пакеты гигабайт. Попробуем с Вами разобраться во всех этих нюансах.
Использовать радиоволны для голосовой связи начали ещё в 30-х годах ХХ века. Первые прототипы беспроводных раций разрабатывала на базе своих радиоприёмников американская компания Motorola. Готовые к эксплуатации образцы довольно громоздких раций появились вначале у военных, а чуть позже и в патрульных автомобилях у полицейских. Эти приёмо-передатчики могли работать на расстоянии в несколько километров от базовой станции и их фактически можно считать прообразом современных сотовых сетей.
Теоретическую базу для обмена маломощными радиосигналами в рамках сот с антенной в их центре разработали ещё в конце 50-х годов. Однако, технически реализовать описанную схему получилось лишь спустя 10 лет, когда стало возможно осуществлять связь между соседними сотами. В начале 70-х годов всё та же компания Motorola разработала первый мобильный телефон, а со временем совместно с AT&T организовала первую сотовую сеть на территории США:
К концу 70-х – началу 80-х годов собственные сотовые сети появились в Японии и на севере Европы (Норвегия, Дания, Швеция и Финляндия). Все они были сетями первого поколения, которое отличалось использованием только аналоговой частотной модуляции для приёма и передачи сигнала в диапазоне частот от 170 до 900 МГц (мегагерц).
Сети стандарта 1G отличались низкой пропускной способностью (около 2 кбит/с) и не самым оптимальным распределением частотных каналов. Поэтому передовые в техническом плане государства уже в середине 80-х стали разрабатывать базу для перехода к цифровой мобильной связи второго поколения. Хотя, в некоторых странах аналоговая мобильная связь существует и поныне наряду с новыми сетями. Ярким примером можно считать скандинавскую систему NMT-450 (Nordic Mobile Telephone), использующую диапазон 450 МГц, которая работает ещё с конца 70-х!
Настоящий расцвет мобильная сотовая связь переживает с переходом от аналоговых технологий к цифровым. Это позволило более оптимально использовать выделенные каналы связи, а также значительно повысить скорость и качество передачи данных. В сетях 2G средняя скорость обмена информацией повысилась до 10 – 15 кбит/с. Это позволило реализовать помимо прямой голосовой связи ещё и передачу коротких текстовых сообщений (SMS).
Переход от 1G к 2G начался в 90-х годах уже прошлого века и был сопряжён с рядом трудностей. Дело в том, что к тому времени у уже существовавших аналоговых сетей первого поколения было довольно много пользователей. Поэтому пришлось переделывать всю систему так, чтобы существовала поддержка и аналоговых, и цифровых режимов работы одновременно.
Подобный цифро-аналоговый стандарт был внедрён в 92-м году в США как надстройка над существовавшим стандартом AMPS, получив название D-AMPS (Digital Advanced Mobile Phone Service – цифровая усовершенствованная служба мобильной связи). Работал он в диапазоне частот 400 – 890 МГц и развивался вплоть до 1996 года. С тех пор стандарт постепенно вытесняется из употребления другими более продвинутыми реализациями полностью цифровых сетей.
В Европе, в отличие от Америки, если не считать скандинавского NMT, в каждой из стран существовало множество разрозненных аналоговых стандартов, работавших в различных диапазонах. Связать их воедино было технически невозможно, поэтому здесь пошли другим путём и в 1991 году создали изначально общий цифровой стандарт, который получил название GSM (Global System for Mobile Communications – глобальный стандарт мобильной связи):
Основными нововведениями GSM (если не считать того, что это был изначально цифровой стандарт) стала поддержка SIM-карт (ранее в других системах номер телефона и зависимость от оператора задавались на уровне прошивки) и роуминга (возможности подключаться к сетям других операторов того же стандарта вещания). Изначально GSM использовал частоту 900 МГц (точнее, диапазон 890 – 960 МГц), однако, со временем включил в себя частоты 1800 МГц (1710 – 1880 МГц), а также 850 МГц (824 – 894 МГц) и 1900 МГц (1850 – 1990 МГц) (американо-канадский стандарт).
2,5G
Фактически большинство современных мобильных сетей на постсоветском пространстве и в Европе работает на базе стандарта GSM с различными улучшениями и обновлениями. Такие улучшения в большей степени касаются не столько улучшения качества голосовой связи, сколько развития возможности передачи данных через виртуальный канал мобильной связи.
Вплоть до начала 2000-х нормального доступа к Интернету в GSM не было. Была реализована некая адаптация веб-сайтов Всемирной сети по технологии WAP. Однако, даже с учётом адаптации, скорость доступа к WAP-сайтам была на уровне старого Dial-Up. И вот, аккурат к началу нового тысячелетия, появляется технология GPRS (General Packet Radio Service – пакетная радиосвязь общего пользования), которая позволила реализовать пакетную передачу данных.
До внедрения этой технологии базовые станции мобильной связи соединялись лишь с наземными телефонными сетями общего пользования (сокр. ТСОП или ТфОП, англ. PSTN – Public Switched Telephone Network). Теперь же появилась возможность подключаться ещё и к сетям пакетной передачи данных, которые позволяли задействовать более широкий спектр частот для повышения скорости передачи данных.
Теоретическая максимальная пропускная способность GPRS составляла 50 кбит/с (на практике, обычно не выше 40), но это уже дало возможность, пусть и не очень быстро, но получать доступ к привычному Интернету, который в то время вступил в фазу активного развития. Данная технология оказалась столь значительной, что часть специалистов даже выделили для её отличия от остальных технологий 2G термин 2.5G.
Однако, с дальнейшим развитием Интернета и улучшением размеров веб-страниц стало ясно, что GPRS уже мало соответствует реалиям. Поэтому уже в 2003 году появляется его улучшенная версия под названием EDGE (Enhanced Data rates for GSM Evolution – улучшенная передача данных для эволюции GSM). Основой улучшения стал новый способ кодирования данных (8PSK), который позволил реализовать их передачу на скорости до 1Мбит/с (реально 512 кбит/с и ниже).
Как и в случае с GPRS, некоторые склонны выделять сети, в которых используется технология EDGE в сети 2.75G. Кстати, EDGE по теоретическим требованиям к скорости обмена данными (1 Мбит/с) уже подходит под характеристики сетей третьего поколения. Но из-за реальных потерь всё же недотягивает к ним по уровню стабильности.
Технологии EDGE и GPRS сегодня распространены практически повсеместно и обычно именно они используются для доступа к Интернету с мобильного телефона в зоне, где нет покрытия 3G. Опознать тип (а значит и прикинуть максимальную скорость соединения) Вы можете, взглянув на значок Интернет-подключения в области уведомлений Вашего телефона. Буква «G» будет означать GPRS со скоростью до 50 кбит/с, а «E», соответственно, EDGE со скоростью выше 50 кбит/с:
Начало нового поколения мобильной связи положила технология CDMA (Code Division Multiple Access – множественный доступ с кодовым разделением). В отличие от GSM, где пользователю выделялся лишь ограниченный по частоте (FDMA) или времени (TDMA) канал связи, в CDMA изначально каждый абонент мог использовать всю ширину канала. Различение же одновременно передаваемых потоков данных осуществлялось внедрением специальных псевдослучайных последовательностей, которые использовались в качестве идентификаторов на уровне аппаратного обеспечения.
Фактически именно использование кодового разделения для опознания трафика конкретного абонента, а также отход от привязки к телефонными сетями общего пользования и стали определяющими чертами 3G. Новый тип сетей, как и GPRS, изначально имел прямую связь как с ТСОП, так и с Интернет-провайдером, что в сочетании с широким пропускным каналом позволило реализовать доступ ко Всемирной Сети на скоростях выше 1 Мбит/с.
Изначально сети CDMA стали появляться с 1995 года в США в качестве альтернативы уже устаревшего стандарта D-AMPS. Однако, реальный их бум начался с появлением реализации CDMA2000, работавшей на частоте 1250 МГц с максимальной скоростью приёма до 4.9 Мбит/с и отдачи до 1.8 Мбит/с.
Примерно в это же время появился и альтернативный стандарт WCDMA (Wideband Code Division Multiple Access – широкополосный множественный доступ с кодовым разделением), покрывавший частоты в диапазоне 1900 – 2100 МГц и дающий скорость передачи данных до 2 Мбит/с. Его плюс был в том, что реализовать его поддержку можно было на базе имеющегося GSM-оборудования. Поэтому именно с WCDMA в Европе началась поддержка этой технологии, а также переход на 3G.
Основой сетей CDMA является технология EV-DO (Evolution-Data Optimized – оптимизация для эволюции данных). Фактически версия этой технологии, которая используется в той или иной сети, определяет максимальные скорости передачи данных. На сегодняшний день существует 5 её версий (наиболее распространённой на сегодняшний день является вторая – Rev.A):
Версия | Максимальная скорость приёма | Максимальная скорость передачи |
---|---|---|
Rev.0 | 2.4 Мбит/с | 150 кбит/с |
Rev.A | 3.1 Мбит/с | 1.8 Мбит/с |
Rev.B | 73.5 Мбит/с | 27 Мбит/с |
Rev.C | 280 Мбит/с | 75 Мбит/с |
Rev.D | 500 Мбит/с | 120 Мбит/с |
Несмотря на ряд преимуществ и частичную совместимость с сетями GSM, в Европе и странах СНГ большее распространение получил более совместимый стандарт UMTS (Universal Mobile Telecommunications System – Универсальная Мобильная Телекоммуникационная Система), который по принципу работы схож с WCDMA, но действует в диапазоне частот GSM (1885 – 2025 МГц для передачи данных от клиента и 2110 – 2200 МГц для приёма данных).
Максимальной теоретической скоростью передачи данных в сетях UMTS является 21 Мбит/с, но на практике средний показатель варьирует в диапазоне от 384 кбит/с до 7.2 Мбит/с (что, в принципе, довольно хорошо). Основным недостатком UMTS считается довольно малый радиус соты (всего 1.5 км), однако, внедрение данного стандарта выгодно в плане сравнительно небольших вложений на модернизацию базовых станций и хорошей совместимости с GSM.
В качестве развития UMTS сегодня во многих местах разворачиваются сети HSPA (High-Speed Packet Access – высокоскоростной пакетный доступ) и HSPA+ (Evolved High-Speed Packet Access – развитый высокоскоростной пакетный доступ). Как и в случае с GPRS и EDGE, они реализуют собой переходные стандарты развития третьего поколения мобильной связи 3.5G и 3.75G, соответственно.
Отличаются стандарты максимальными скоростями:
- 14.4 Мбит/с (загрузка) и 5.76 Мбит/с (отдача) для HSPA;
- 42.2 Мбит/с (загрузка) и 5.76 Мбит/с (отдача) для HSPA+;
Поскольку максимальная скорость отдачи в обеих стандартах одинакова, то их иногда называют HSDPA (D – download – загрузка). На практике в строке уведомлений мобильного телефона при работе в сетях третьего поколения может отображаться один из трёх индикаторов:
- 3G – сеть стандарта UMTS;
- H – сеть стандарта HSPA;
- H+ – сеть стандарта HSPA+.
На момент написания статьи из уже реально действующих мобильных сетей последними являются сети 4-го поколения, они же 4G. Наиболее распространёнными стандартами высокоскоростных современных технологий являются сети LTE (Long-Term Evolution – долговременное развитие) и WiMAX (Worldwide Interoperability for Microwave Access – всемирное взаимодействие для микроволнового доступа).
Стандарт LTE является прямым потомком GSM и является обратно совместимым с оборудованием для работы EDGE и HSPA, но несовместим с интерфейсами 2G и 3G на устройствах пользователей, поскольку требует наличия отдельных дополнительных модулей, которых нет, например, в старых смартфонах. Он работает в расширенном диапазоне частот (от 1400 до 2000 МГц) за счёт чего обеспечивает скорость скачивания до 326.4 Мбит/с, а отдачи до 172.8 Мбит/с (в спецификации LTE-A (Advanced – улучшенное)).
Радиус покрытия у LTE значительно выше, чем, например, у HSPA и составляет от 3.2 до 19.7 км (в зависимости от мощности базовой станции) с потерями в скорости до 1Мбит/с. Именно этот факт (больше радиус – значит, меньше затрат на модернизацию) объясняет активное внедрение операторами сотовой связи LTE в крупных городах.
Ещё более перспективным стандартом радиосвязи является WiMAX. В отличие от всех предыдущих стандартов, он имеет больше общего не с привычным GSM, а с WiFi. Он даже базируется на той же ветке спецификаций (IEEE 802.16), что и домашние беспроводные сети. Однако, если WiFi имеет небольшой радиус покрытия, то WiMAX изначально разрабатывается как беспроводной стандарт широкополосной передачи данных на расстояниях свыше 1 км (на данный момент до 80 км).
Высокие скорости и большая ёмкость соты в WiMAX достигается благодаря широкой полосе используемого высокочастотного диапазона (1.5-11 ГГц). Поэтому технологию можно применять не только для телекоммуникационных нужд, но также для создания объединённой сети разрозненных точек доступа WiFi, организации различных систем удалённого мониторинга и контроля, а также реализации зоны покрытия мобильной связи и Интернет в труднодоступных местах.
На сегодняшний день сети WiMAX ещё только вводятся в эксплуатацию в развитых странах. В том числе в России (оператор Скартел) и Казахстане (проект FlyNet). Однако, уже активно ведутся изыскания в сфере внедрения ещё более производительных сетей пятого поколения. Ожидается, что сети 5G будут дальнейшим развитием WiMAX 2 с зоной покрытия до 150 км и скоростями до 1 Гбит/с. Но пока это ещё только планируется…
Чтобы обобщить всё, что мы написали выше, предлагаю свести всю информацию в единую таблицу:
Поколение | Технология | Год | Максимальная скорость передачи данных | Максимальный радиус соты | Рабочие частоты | Использование | Особенности |
---|---|---|---|---|---|---|---|
1G | AMPS | 1983 | до 2 кбит/с | до 30 км | 824–894 МГц | США, Канада, Австралия. В данный момент не используется | Полностью аналоговое поколение стандартов с поддержкой голосовых вызовов и малой ёмкостью соты (до 200 абонентов) |
NMT | 1981 | до 1.9 кбит/с | до 40 км | 453–467.5 МГц (NMT-450) и 890–960 МГц (NMT-900) | Скандинавские страны. До сих пор ещё эксплуатируются. | ||
2G | D-AMPS | 1992 | до 15 кбит/с | до 30 км | 400–890 МГц | США, Канада, Австралия. В данный момент почти не используется | Цифровой стандарт сохранявший совместимость с аналоговым AMPS |
GSM | 1992 | до 9.6 кбит/с | до 120 км | 824–894 МГц (GSM-850), 890–960 МГц (GSM-900), 1710–1880 МГц (GSM-1800) и 1850–1990 МГц (GSM-1900) | Страны Европы, а позже и весь мир | Первый полностью цифровой стандартизированный сотовый стандарт. Дал возможность отправлять SMS | |
2.5G | GPRS | 1996 | до 171.2 кбит/c | до 40 км | Все частоты GSM | Страны Европы, а позже и весь мир | Надстройка над GSM, которая позволила передавать пакетные данные напрямую через шлюзы Интернет-провайдера, а не через наземные телефонные линии |
2.75G | EDGE | 2003 | до 474 кбит/с | до 4 км | Все частоты GSM | США, а позже и весь мир | Надстройка над GSM, которая позволила передавать пакетные данные напрямую через шлюзы Интернет-провайдера, а не через наземные телефонные линии |
3G | CDMA | 1995 | до 500 Мбит/с (EV-DO Rev.D) | до 35 км | 1.25–2100 МГц | США, а позже и весь мир | Первая широкополосная система передачи данных с разделением потоков по специальному коду. Имеет несколько спецификаций, которые могут быть совместимы (WCDMA) или несовместимы с GSM (CDMA2000). |
UMTS | 2004 | до 7.2 Мбит/с | до 1.5 км | Разные в разных странах. У нас 1885–2200 МГц | Европа, а позже и весь мир | Используя наработки WCDMA, стандарт был разработан для обеспечения совместимости с GSM-сетями. | |
3.5G | HSPA | 2006 | до 14.4 Мбит/с | до 2 км | Диапазон UMTS | Европа, а позже и весь мир | Надстройка над системой UMTS, обеспечивающая более оптимальное использование канала связи. |
3.75G | HSPA+ | 2009 | до 42.2 Мбит/с | до 2 км | Диапазон UMTS | Европа, а позже и весь мир | Улучшение системы HSPA. Переходный стандарт между 3G и 4G. |
4G | LTE | 2012 | до 326.4 Мбит/с (LTE-A) | до 19.7 км | 1400–2000 МГц | США, а позже и весь мир | Является потомком GSM, но несовместим со стандартами 2G и 3G. |
WiMAX | 2010 | до 75 Мбит/с | до 80 км | 1.5–11 ГГц | Страны дальнего востока, а позже и весь мир | Улучшение системы HSPA. Переходный стандарт между 3G и 4G. |
Технологии в наше время не стоят на месте. А в плане развития сотовой связи инновации появляются практически ежегодно! Ещё не все до конца поняли, что такое 3G, как уже внедряются стандарты 4-го поколения, а поговаривают и о тестировании 5G!
Одно можно сказать точно, что связь со временем, скорее всего, полностью перейдёт из плоскости наземных телефонных линий в плоскость различных онлайн-сервисов. Доступ к ним будет обеспечен внедрением широкополосных беспроводных стандартов с улучшенным покрытием. Например, уже в прошлом году компания Мегафон в России тестировала возможность передачи данных на скоростях до 4.2 Гбит/с, а в этом году МТС совместно с Nokia фактически подготовили базу для внедрения сетей 5G!
Так что уже через пару-тройку лет наши мобильники вполне могут стать настоящими видеофонами и мы будем не только слышать, но и всегда видеть наших собеседников!
P.S. Разрешается свободно копировать и цитировать данную статью при условии указания открытой активной ссылки на источник и сохранения авторства Руслана Тертышного.
—> —> ad S5 / —>
Получать обновления: |
—>
Повсеместное распространение технологии High Speed Downlink Packet Access (HSDPA) трансформирует характер беспроводных коммуникаций и позволяет реализовать широкополосный беспроводной доступ. Это очередное технологическое достижение, способное привести к увеличению спроса на услуги связи со стороны конечных пользователей. На корпоративном рынке спрос на коммуникации увеличивается за счет повсеместного предоставления услуг виртуального офиса; увеличение спроса на связь со стороны индивидуальных пользователей обуславливается их стремлением работать с мобильным широкополосным доступом совершенно так же, как и с фиксированным.
С появлением технологии HSDPA рост рынка мобильного широкополосного доступа на базе UMTS повторяет тенденции рынка фиксированной широкополосной связи, что сказывается как на корпоративных, так и на индивидуальных пользователях.
Внедрение технологии HSDPA в UMTS-сетях позволяет добиться более высокой скорости передачи данных и снизить значение сетевых задержек для конечных пользователей. Тремя основными особенностями стандарта UMTS является преемственность услуг второго и третьего поколения, поддержка мультимедийных решений за счет возможности одновременного предоставления голосовых услуг и услуг по передаче данных, а также высокая скорость передачи данных.
Использование технологии HSDPA позволяет пойти еще дальше, и обеспечить на практике среднюю скорость передачи данных порядка 800 Кбит/с и даже 1,5 Мбит/с, поскольку пиковая скорость передачи данных составляет 3,6 Мбит/с для мобильных терминалов категории 6 и до 14,4 Мбит/с для терминалов категории 10. Кроме того, технология HSDPA позволяет снизить время задержки; значение задержки возврата эха (Round Trip Delay) в этом случае не превышает 65 мс, что позволяет использовать мобильную связь для интерактивных приложений, таких как многопользовательские игры.
Пример использования HSDPA
Возьмем, к примеру, следующую ситуацию: родители с детьми рано утром отправляются в путешествие. После двух часов пути детям стало скучно. Вчера они узнали о том, что начались региональные соревнования по компьютерным играм ? как раз в то время, когда они находятся в дороге. Несмотря на то, что это многопользовательская игра с высоким разрешением, предъявляющая высокие требования к пропускной способности, благодаря технологии HSDPA дети могут загрузить игру и участвовать в соревнованиях непосредственно во время движения. Спустя всего несколько секунд они начинают играть со своими друзьями-соперниками. Низкие значения сетевых задержек обеспечивают высокую степень интерактивности игрового процесса; но для родителей важнее, что дети заняты игрой и всю дорогу ведут себя спокойно.
В свою очередь, родителям, несмотря на отпуск, все же приходится работать ? они проводят занятие в университете неподалеку от гостиницы. В больнице, где они работают, возникло затруднение с диагнозом, который необходимо поставить по результатам рентгеновского снимка. Коллеги решили собрать консилиум и проконсультироваться по этому вопросу со специалистами. Была использована связь по сети в режиме видеоконференции, и менее чем за 20 секунд был передан большой объем необходимых данных.
Подобные приложения существенно увеличивают спрос на мобильный широкополосный доступ. Сегодня технология HSDPA позволяет предоставлять мобильный доступ везде, где это необходимо. Кроме того, технология HSDPA открывает операторам новые возможности для выхода на рынок услуг triple play, и позволяет предоставлять местным жителям целый пакет услуг: телевидение, доступ в Интернет, голосовые и мобильные услуги. Благодаря HSDPA все это доступно уже сегодня.
Услуги triple play с использованием технологии HSDPA
Для предоставления услуг HSDPA не требуется специального оборудования
Переход к технологиям HSDPA путем обновления ПО
Nortel уже более пяти лет производит базовые станции Node B, позволяющие предоставлять услуги UMTS. При этом любая базовая станция Node B, где бы она ни была установлена, будет поддерживать технологию HSDPA после обновления только лишь программного обеспечения. Опираясь на технологии на базе стандарта IS-95 CDMA трех предыдущих поколений, а также используя свой опыт в разработке и внедрении решений 1xEV-DO в базовых станциях четвертого поколения для сетей CDMA и UMTS, Nortel уже на аппаратном уровне реализовала поддержку модуляции QPSK и 16 QAM HSDPA. Таким образом, ни одна из установленных базовых станций Node B не требует замены модулей оборудования.
Часть программного обеспечения контроллера подсистемы радиодоступа (RNC), необходимая для оказания услуг HSDPA, выполнена в виде подключаемого модуля (add-on) для существующего программного обеспечения, позволяющего работать с мобильными телефонами версии R’99. Поэтому на работе сети UMTS версии R’99 внедрение HSDPA никак не сказывается. Программное обеспечение HSDPA реализует новый фреймовый протокол, позволяющий работать с трафиком транспортного канала HS-DSCH на интерфейсе Iub. Кроме того, это программное обеспечение также включает обновление инструментов для управления радиоресурсами (Radio Resource Management) для сетей HSDPA, в частности инициация и окончание вызовов HSDPA, анализ возможностей пользовательского оборудования (UE), проверка канала радиодоступа (RAB) и контроль за установлением HSDPA соединений (CAC).
В HSDPA-решениях Nortel используется опыт внедрения коммерческих сетей Nortel 1xEV-DO. Поскольку технологии 1xEV-DO и HSDPA используют одни и те же механизмы, компания с самого начала создавала полностью совместимые с HSDPA решения. К примеру, первая версия решения HSDPA обеспечивает высокую гибкость при внедрении сетей HSDPA в силу поддержки нескольких несущих (multi-carrier) и способности разделять использование генератора опорной частоты (BBU, Base Band Unit) на сектор.
Nortel одним из первых телекоммуникационных вендоров представила на рынке законченное HSDPA-решение. Первый в отрасли беспроводной HSDPA-вызов был продемонстрирован еще в ноябре 2004, а запуск сетей в тестовую эксплуатацию начался во втором квартале 2005 года. На конгрессе Ассоциации GSM в этом году Nortel продемонстрировала соединение со скоростью 3,6 Мб/с на коммерческой сети.
При использовании HSDPA расширяются возможности конечных пользователей за счет увеличения пропускной способности сети в пять раз и увеличения емкости сети в два раза по сравнению с традиционными UMTS-сетями. Технология HSDPA обеспечивает низкие значения сетевых задержек (значение задержки возврата эха составляет порядка 65 мс); это позволяет запускать в HSDPA сетях интерактивные приложения, в том числе многопользовательские игры. Кроме того, низкое время задержки играет важную роль для реализации интерактивных приложений IMS и в системах передачи данных ACK/NACK, где время задержки напрямую сказывается на пропускной способности. Например, для обеспечения высокой пропускной способности канала TCP требуется, чтобы значение задержки возврата эха не превышало 100 мс.
Поддержка различных терминалов
Nortel обладает обширной программой тестирования на взаимосовместимость (Interoperability Testing, IOT), которая призвана выявить различные неполадки и многочисленные особенности работы терминальных устройств. Особое значение уделяется каналу восходящей связи (uplink channel) HSDPA, по которому передаются пакеты NACK/ACK, а также результаты измерений состояния радиотракта (Channel Quality Indicator), поскольку пропускная способность базовых станций Node B должна в точности соответствовать пропускной способности каждого пользователя. Процедура вычисления значения Channel Quality Indicator нестандартизована, и важно уметь корректировать эту информацию в тех случаях, когда терминал работает со слишком оптимистичными, завышенными параметрами. В противном случае спектр частот будет расходоваться нерационально, а качество предоставления услуг ухудшится.
Программа Nortel по тестированию на взаимосовместимость HSDPA-оборудования призвана обеспечить соответствие терминалов ряду требований, снизить риски использования мобильных телефонов, и способствовать появлению новых услуг HSDPA.
Удвоение емкости соты за счет использования дополнительных функций
Первая версия HSDPA-решения уже внедрена и поддерживает такие передовые функции как управление мощностью по каналу HS-SCCH Signaling Channel, что обеспечивает очень высокий коэффициент полезного действия для наружного использования HSDPA, а также позволяет реализовать поддержку нескольких пользователей на одном интервале времени передачи (TTI).
В уличных условиях задача по обеспечению высокой пропускной способности существенно усложняется. Это обусловлено тем, что помехи на границах сот увеличиваются, а также становится больше размер самих сот по сравнению с сотами внутри помещений для предоставления услуг типа WLAN. Главным образом это затрагивает вопросы управления мощностью базовых станций HSDPA, то есть происходит снижение пропускной способности канала от базовой станции к терминалу из-за потребления мощности HS-SCCH. Таким образом, для того, чтобы снизить негативный эффект на HSDPA, необходимо реализовать управление мощностью по каналу HS-SCCH. В противном случае более 10% пропускной способности канала должно быть зарезервировано для канала сигнализации HS SCCH.
Низкая стоимость передачи данных, возможность управления перегрузками
Технология HSDPA обеспечивает более высокую спектральную эффективность за счет использования нового общего нисходящего канала и усовершенствованных механизмов, таких как адаптивная модуляция и кодирование, или модуляция 16 QAM Modulation (в тех случаях, когда качество радиосигнала позволяет использовать более высокую скорость модуляции). Это приводит к ужесточению требований к пропускной способности между базовой станцией UMTS BTS и контроллером радиодоступа RNC. Пропускная способность каждой базовой станции UMTS будет зависеть от мобильных характеристик HSDPA, которые в свою очередь определяются типом пользовательского оборудования (UE category).
В базовых станциях и контроллерах радиодоступа Nortel для UMTS-сетей используются наработки компании в области ATM. Оборудование полностью поддерживает все классы обслуживания ATM (CBR, , rt-VBR, nrt-VBR, UBR) и режимы работы (emission priorities). За счет сокращения задержек при передаче трафика голосовой и видео- телефонии, а также служебного трафика управления, продукты Nortel подсистемы UTRAN обеспечивают в современных UMTS-сетях версии Rel’99 прирост пропускной способности на пользовательском уровне на интерфейсе Iub до 50%, и дополнительную экономию пропускной способности до 90% на уровне управления. Это позволяет операторам снизить эксплуатационные затраты на передачу данных. Однако вследствие использования новой технологии пакетного доступа и увеличения пропускной способности, в решениях HSDPA увеличивается вероятность возникновения перегрузок на канале между базовой станцией Node B и контроллером радиодоступа RNC. Для управления перегрузками на каналах связи компания предлагает два ключевых механизма:
Отказ от использования механизмов управления трафиком через интерфейс Iub потребует резервирования канала между базовой станцией Node B и контроллером радиодоступа RNC. В противном случае вследствие ATM ошибок, соотвествующего появления запросов на повторную передачу (RLC retransmission) и уменьшения размера окна TCP, будет резко снижена скорость передачи данных.
Перспективное оборудование с поддержкой скорости передачи данных до 14,4 Мбит/с
В марте 2005 года Nortel продемонстрировала полную поддержку технологии HSDPA на базовых станциях Node B, используемых в современных коммерческих сетях, где за счет использования всех 15 кодов на одном канале достигалась скорость передачи данных 14,4 Мбит/с. Однако в современных условиях без использования соответствующих приемников реализовать преимущество всех 15 кодов в сотах HSDPA не получается из-за серьезных помех между различными кодами. Однако в будущем, когда появятся новые типы клиентских терминалов ? скорее всего в 2008 году ? операторам не придется реконфигурировать базовые станции Nortel UMTS Node B для увеличения скорости передачи данных.
HSUPA-решения Nortel
Nortel ведет исследования и разработки в области технологий HSUPA (E-DCH в стандарте 3GPP Release 6), призванных удовлетворить спрос на симметричный обмен данными, поскольку увеличение использования сетевых ресурсов будет связано главным образом с персональными коммуникациями (пользователь-пользователь). Компания принимает активное участие в стандартизации технологий HSDPA и HSUPA, и вносит многочисленные поправки в спецификации стандартов HSDPA 3GPP Release 5 и HSUPA Release 6. Как и в случае с HSDPA, оборудование Nortel для UMTS-сетей готово к внедрению технологии HSUPA. В соответствии с текущим статусом стандарта 3GPP Release 6 технология HSUPA будет реализована в два этапа:
Выводы
Первая версия HSDPA-решения Nortel обеспечивает высокую гибкость при внедрении HSDPA за счет поддержки нескольких несущих а также возможности разделять использование генератора опорной частоты (BBU, Base Band Unit) на сектор. Первая версия HSDPA-решения доступна для массового внедрения, поддерживая такие функции как динамическое управление мощностью (Dynamic Power Management) и управление мощностью HS-SCCH Power Control, которые обеспечивают высокий коэффициент полезного действия для уличных HSDPA-решений. Эти две особенности позволяют вдвое увеличить емкость каждой соты по сравнению с классическими решениями HSDPA.
Можно предположить, что в ближайшее время для установки базовых станций UMTS-GSM в густонаселенных городских районах может потребоваться четыре, а то и больше каналов E1. С распространением таких приложений по передаче данных как web-серфинг, потоковое видео и другие инфокоммуникационные и развлекательные услуги, трафик базовых станций будет продолжать увеличиваться. С появлением технологии HSDPA эта тенденция только усиливается. В 2006-2007 годах операторы беспроводной связи столкнутся изменением характера распределения трафика; более 60% всего UMTS-трафика будет пакетно-коммутируемым. Влияние этого перераспределения на пропускную способность каждой базовой станции UMTS будет зависеть от мобильных характеристик HSDPA, которые в свою очередь определяются категорией пользовательского оборудования (UE category).
Архитектура базовых станций UMTS также обеспечивает возможность экономически эффективной миграции к широкополосным решениям, где для реализации услуг HSDPA потребуются новые, альтернативные способы передачи трафика по интерфейсу Iub, такие как темное оптоволокно (dark fiber), LMDS, медь или Ethernet. Для этого, помимо платы iCCM, отвечающей непосредственно за передачу данных, в базовых станциях будут устанавливаться специальные дополнительные дочерние сетевые платы, необходимые для этих решений.
Кроме того, в целях удовлетворения растущего спроса на услуги передачи данных ведется дальнейшее развитие технологий HSDPA. Инновации Nortel в области радиотехнологий MIMO и OFDM обеспечивают возможность эффективного увеличения емкости сети для обеспечения дальнейшего развития широкополосных беспроводных услуг. Nortel еще с 2000 года занимается разработками в области MIMO-OFDM; компания продемонстрировала пиковую скорость передачи данных 300 Мбит/с на выделенном радиоканале 20 МГц.
Повсеместное внедрение технологии High Speed Downlink Packet Access (HSDPA) трансформирует характер беспроводных коммуникаций и позволит реализовать широкополосный беспроводной доступ.
? Александр Цицура, менеджер технической поддержки продаж, сектор «Беспроводные сети», Nortel Networks, Россия и СНГ
© СОТОВИК
Используемые источники:
- https://gsm-technology.ru/stati/chto-takoe-2g-3g-4g-lte/
- https://www.bestfree.ru/article/device/cell-standards.php
- http://www.sotovik.ru/news/articles/article_4285.html