Содержание
B
Содержание:
Стандарты сотовой связи – общепринятые обозначения различных технологий, которые используются в сфере предоставления услуг мобильной связи. Некоторые стандарты из-за схожести их реализации и характеристик объединяют в группы, которые называются поколениями сотовой связи (англ. «generation» – «поколение»). Отсюда понятия 1G, 2G, 3G, 4G, то есть, первое поколение, второе поколение и т.д.
Из статьи ниже Вы узнаете об истории развития мобильных стандартов и поймёте чем отличаются между собой различные поколения и технологии обеспечения сотовой связи.
Язык: | Русский/Английский |
Формат: | HTML |
Обновлено: | 2017-11-05 |
Автор: | BestFREE.ru |
ad S2 / —>
Узнайте, какие поколения мобильной связи сегодня существуют, а также чем они отличаются между собой.
Наверняка сегодня уже практически не осталось людей, которые бы не пользовались сотовой связью. Практически у всех есть мобильные телефоны, которые, помимо средства общения, могут выступать в роли полноценных устройств для выполнения различных прикладных задач. В частности, популярной сферой применения является Интернет-сёрфинг.
И вот здесь начинается самое интересное… Если с голосовой связью дела везде обстоят практически одинаково, то в плане доступа ко Всемирной Сети всё не так просто. Здесь обычно всплывают громкие рекламные лозунги, рекламирующие какой-то 3G, высокоскоростной доступ и пакеты гигабайт. Попробуем с Вами разобраться во всех этих нюансах.
Использовать радиоволны для голосовой связи начали ещё в 30-х годах ХХ века. Первые прототипы беспроводных раций разрабатывала на базе своих радиоприёмников американская компания Motorola. Готовые к эксплуатации образцы довольно громоздких раций появились вначале у военных, а чуть позже и в патрульных автомобилях у полицейских. Эти приёмо-передатчики могли работать на расстоянии в несколько километров от базовой станции и их фактически можно считать прообразом современных сотовых сетей.
Теоретическую базу для обмена маломощными радиосигналами в рамках сот с антенной в их центре разработали ещё в конце 50-х годов. Однако, технически реализовать описанную схему получилось лишь спустя 10 лет, когда стало возможно осуществлять связь между соседними сотами. В начале 70-х годов всё та же компания Motorola разработала первый мобильный телефон, а со временем совместно с AT&T организовала первую сотовую сеть на территории США:
К концу 70-х – началу 80-х годов собственные сотовые сети появились в Японии и на севере Европы (Норвегия, Дания, Швеция и Финляндия). Все они были сетями первого поколения, которое отличалось использованием только аналоговой частотной модуляции для приёма и передачи сигнала в диапазоне частот от 170 до 900 МГц (мегагерц).
Сети стандарта 1G отличались низкой пропускной способностью (около 2 кбит/с) и не самым оптимальным распределением частотных каналов. Поэтому передовые в техническом плане государства уже в середине 80-х стали разрабатывать базу для перехода к цифровой мобильной связи второго поколения. Хотя, в некоторых странах аналоговая мобильная связь существует и поныне наряду с новыми сетями. Ярким примером можно считать скандинавскую систему NMT-450 (Nordic Mobile Telephone), использующую диапазон 450 МГц, которая работает ещё с конца 70-х!
Настоящий расцвет мобильная сотовая связь переживает с переходом от аналоговых технологий к цифровым. Это позволило более оптимально использовать выделенные каналы связи, а также значительно повысить скорость и качество передачи данных. В сетях 2G средняя скорость обмена информацией повысилась до 10 – 15 кбит/с. Это позволило реализовать помимо прямой голосовой связи ещё и передачу коротких текстовых сообщений (SMS).
Переход от 1G к 2G начался в 90-х годах уже прошлого века и был сопряжён с рядом трудностей. Дело в том, что к тому времени у уже существовавших аналоговых сетей первого поколения было довольно много пользователей. Поэтому пришлось переделывать всю систему так, чтобы существовала поддержка и аналоговых, и цифровых режимов работы одновременно.
Подобный цифро-аналоговый стандарт был внедрён в 92-м году в США как надстройка над существовавшим стандартом AMPS, получив название D-AMPS (Digital Advanced Mobile Phone Service – цифровая усовершенствованная служба мобильной связи). Работал он в диапазоне частот 400 – 890 МГц и развивался вплоть до 1996 года. С тех пор стандарт постепенно вытесняется из употребления другими более продвинутыми реализациями полностью цифровых сетей.
В Европе, в отличие от Америки, если не считать скандинавского NMT, в каждой из стран существовало множество разрозненных аналоговых стандартов, работавших в различных диапазонах. Связать их воедино было технически невозможно, поэтому здесь пошли другим путём и в 1991 году создали изначально общий цифровой стандарт, который получил название GSM (Global System for Mobile Communications – глобальный стандарт мобильной связи):
Основными нововведениями GSM (если не считать того, что это был изначально цифровой стандарт) стала поддержка SIM-карт (ранее в других системах номер телефона и зависимость от оператора задавались на уровне прошивки) и роуминга (возможности подключаться к сетям других операторов того же стандарта вещания). Изначально GSM использовал частоту 900 МГц (точнее, диапазон 890 – 960 МГц), однако, со временем включил в себя частоты 1800 МГц (1710 – 1880 МГц), а также 850 МГц (824 – 894 МГц) и 1900 МГц (1850 – 1990 МГц) (американо-канадский стандарт).
2,5G
Фактически большинство современных мобильных сетей на постсоветском пространстве и в Европе работает на базе стандарта GSM с различными улучшениями и обновлениями. Такие улучшения в большей степени касаются не столько улучшения качества голосовой связи, сколько развития возможности передачи данных через виртуальный канал мобильной связи.
Вплоть до начала 2000-х нормального доступа к Интернету в GSM не было. Была реализована некая адаптация веб-сайтов Всемирной сети по технологии WAP. Однако, даже с учётом адаптации, скорость доступа к WAP-сайтам была на уровне старого Dial-Up. И вот, аккурат к началу нового тысячелетия, появляется технология GPRS (General Packet Radio Service – пакетная радиосвязь общего пользования), которая позволила реализовать пакетную передачу данных.
До внедрения этой технологии базовые станции мобильной связи соединялись лишь с наземными телефонными сетями общего пользования (сокр. ТСОП или ТфОП, англ. PSTN – Public Switched Telephone Network). Теперь же появилась возможность подключаться ещё и к сетям пакетной передачи данных, которые позволяли задействовать более широкий спектр частот для повышения скорости передачи данных.
Теоретическая максимальная пропускная способность GPRS составляла 50 кбит/с (на практике, обычно не выше 40), но это уже дало возможность, пусть и не очень быстро, но получать доступ к привычному Интернету, который в то время вступил в фазу активного развития. Данная технология оказалась столь значительной, что часть специалистов даже выделили для её отличия от остальных технологий 2G термин 2.5G.
Однако, с дальнейшим развитием Интернета и улучшением размеров веб-страниц стало ясно, что GPRS уже мало соответствует реалиям. Поэтому уже в 2003 году появляется его улучшенная версия под названием EDGE (Enhanced Data rates for GSM Evolution – улучшенная передача данных для эволюции GSM). Основой улучшения стал новый способ кодирования данных (8PSK), который позволил реализовать их передачу на скорости до 1Мбит/с (реально 512 кбит/с и ниже).
Как и в случае с GPRS, некоторые склонны выделять сети, в которых используется технология EDGE в сети 2.75G. Кстати, EDGE по теоретическим требованиям к скорости обмена данными (1 Мбит/с) уже подходит под характеристики сетей третьего поколения. Но из-за реальных потерь всё же недотягивает к ним по уровню стабильности.
Технологии EDGE и GPRS сегодня распространены практически повсеместно и обычно именно они используются для доступа к Интернету с мобильного телефона в зоне, где нет покрытия 3G. Опознать тип (а значит и прикинуть максимальную скорость соединения) Вы можете, взглянув на значок Интернет-подключения в области уведомлений Вашего телефона. Буква «G» будет означать GPRS со скоростью до 50 кбит/с, а «E», соответственно, EDGE со скоростью выше 50 кбит/с:
Начало нового поколения мобильной связи положила технология CDMA (Code Division Multiple Access – множественный доступ с кодовым разделением). В отличие от GSM, где пользователю выделялся лишь ограниченный по частоте (FDMA) или времени (TDMA) канал связи, в CDMA изначально каждый абонент мог использовать всю ширину канала. Различение же одновременно передаваемых потоков данных осуществлялось внедрением специальных псевдослучайных последовательностей, которые использовались в качестве идентификаторов на уровне аппаратного обеспечения.
Фактически именно использование кодового разделения для опознания трафика конкретного абонента, а также отход от привязки к телефонными сетями общего пользования и стали определяющими чертами 3G. Новый тип сетей, как и GPRS, изначально имел прямую связь как с ТСОП, так и с Интернет-провайдером, что в сочетании с широким пропускным каналом позволило реализовать доступ ко Всемирной Сети на скоростях выше 1 Мбит/с.
Изначально сети CDMA стали появляться с 1995 года в США в качестве альтернативы уже устаревшего стандарта D-AMPS. Однако, реальный их бум начался с появлением реализации CDMA2000, работавшей на частоте 1250 МГц с максимальной скоростью приёма до 4.9 Мбит/с и отдачи до 1.8 Мбит/с.
Примерно в это же время появился и альтернативный стандарт WCDMA (Wideband Code Division Multiple Access – широкополосный множественный доступ с кодовым разделением), покрывавший частоты в диапазоне 1900 – 2100 МГц и дающий скорость передачи данных до 2 Мбит/с. Его плюс был в том, что реализовать его поддержку можно было на базе имеющегося GSM-оборудования. Поэтому именно с WCDMA в Европе началась поддержка этой технологии, а также переход на 3G.
Основой сетей CDMA является технология EV-DO (Evolution-Data Optimized – оптимизация для эволюции данных). Фактически версия этой технологии, которая используется в той или иной сети, определяет максимальные скорости передачи данных. На сегодняшний день существует 5 её версий (наиболее распространённой на сегодняшний день является вторая – Rev.A):
Версия | Максимальная скорость приёма | Максимальная скорость передачи |
---|---|---|
Rev.0 | 2.4 Мбит/с | 150 кбит/с |
Rev.A | 3.1 Мбит/с | 1.8 Мбит/с |
Rev.B | 73.5 Мбит/с | 27 Мбит/с |
Rev.C | 280 Мбит/с | 75 Мбит/с |
Rev.D | 500 Мбит/с | 120 Мбит/с |
Несмотря на ряд преимуществ и частичную совместимость с сетями GSM, в Европе и странах СНГ большее распространение получил более совместимый стандарт UMTS (Universal Mobile Telecommunications System – Универсальная Мобильная Телекоммуникационная Система), который по принципу работы схож с WCDMA, но действует в диапазоне частот GSM (1885 – 2025 МГц для передачи данных от клиента и 2110 – 2200 МГц для приёма данных).
Максимальной теоретической скоростью передачи данных в сетях UMTS является 21 Мбит/с, но на практике средний показатель варьирует в диапазоне от 384 кбит/с до 7.2 Мбит/с (что, в принципе, довольно хорошо). Основным недостатком UMTS считается довольно малый радиус соты (всего 1.5 км), однако, внедрение данного стандарта выгодно в плане сравнительно небольших вложений на модернизацию базовых станций и хорошей совместимости с GSM.
В качестве развития UMTS сегодня во многих местах разворачиваются сети HSPA (High-Speed Packet Access – высокоскоростной пакетный доступ) и HSPA+ (Evolved High-Speed Packet Access – развитый высокоскоростной пакетный доступ). Как и в случае с GPRS и EDGE, они реализуют собой переходные стандарты развития третьего поколения мобильной связи 3.5G и 3.75G, соответственно.
Отличаются стандарты максимальными скоростями:
- 14.4 Мбит/с (загрузка) и 5.76 Мбит/с (отдача) для HSPA;
- 42.2 Мбит/с (загрузка) и 5.76 Мбит/с (отдача) для HSPA+;
Поскольку максимальная скорость отдачи в обеих стандартах одинакова, то их иногда называют HSDPA (D – download – загрузка). На практике в строке уведомлений мобильного телефона при работе в сетях третьего поколения может отображаться один из трёх индикаторов:
- 3G – сеть стандарта UMTS;
- H – сеть стандарта HSPA;
- H+ – сеть стандарта HSPA+.
На момент написания статьи из уже реально действующих мобильных сетей последними являются сети 4-го поколения, они же 4G. Наиболее распространёнными стандартами высокоскоростных современных технологий являются сети LTE (Long-Term Evolution – долговременное развитие) и WiMAX (Worldwide Interoperability for Microwave Access – всемирное взаимодействие для микроволнового доступа).
Стандарт LTE является прямым потомком GSM и является обратно совместимым с оборудованием для работы EDGE и HSPA, но несовместим с интерфейсами 2G и 3G на устройствах пользователей, поскольку требует наличия отдельных дополнительных модулей, которых нет, например, в старых смартфонах. Он работает в расширенном диапазоне частот (от 1400 до 2000 МГц) за счёт чего обеспечивает скорость скачивания до 326.4 Мбит/с, а отдачи до 172.8 Мбит/с (в спецификации LTE-A (Advanced – улучшенное)).
Радиус покрытия у LTE значительно выше, чем, например, у HSPA и составляет от 3.2 до 19.7 км (в зависимости от мощности базовой станции) с потерями в скорости до 1Мбит/с. Именно этот факт (больше радиус – значит, меньше затрат на модернизацию) объясняет активное внедрение операторами сотовой связи LTE в крупных городах.
Ещё более перспективным стандартом радиосвязи является WiMAX. В отличие от всех предыдущих стандартов, он имеет больше общего не с привычным GSM, а с WiFi. Он даже базируется на той же ветке спецификаций (IEEE 802.16), что и домашние беспроводные сети. Однако, если WiFi имеет небольшой радиус покрытия, то WiMAX изначально разрабатывается как беспроводной стандарт широкополосной передачи данных на расстояниях свыше 1 км (на данный момент до 80 км).
Высокие скорости и большая ёмкость соты в WiMAX достигается благодаря широкой полосе используемого высокочастотного диапазона (1.5-11 ГГц). Поэтому технологию можно применять не только для телекоммуникационных нужд, но также для создания объединённой сети разрозненных точек доступа WiFi, организации различных систем удалённого мониторинга и контроля, а также реализации зоны покрытия мобильной связи и Интернет в труднодоступных местах.
На сегодняшний день сети WiMAX ещё только вводятся в эксплуатацию в развитых странах. В том числе в России (оператор Скартел) и Казахстане (проект FlyNet). Однако, уже активно ведутся изыскания в сфере внедрения ещё более производительных сетей пятого поколения. Ожидается, что сети 5G будут дальнейшим развитием WiMAX 2 с зоной покрытия до 150 км и скоростями до 1 Гбит/с. Но пока это ещё только планируется…
Чтобы обобщить всё, что мы написали выше, предлагаю свести всю информацию в единую таблицу:
Поколение | Технология | Год | Максимальная скорость передачи данных | Максимальный радиус соты | Рабочие частоты | Использование | Особенности |
---|---|---|---|---|---|---|---|
1G | AMPS | 1983 | до 2 кбит/с | до 30 км | 824–894 МГц | США, Канада, Австралия. В данный момент не используется | Полностью аналоговое поколение стандартов с поддержкой голосовых вызовов и малой ёмкостью соты (до 200 абонентов) |
NMT | 1981 | до 1.9 кбит/с | до 40 км | 453–467.5 МГц (NMT-450) и 890–960 МГц (NMT-900) | Скандинавские страны. До сих пор ещё эксплуатируются. | ||
2G | D-AMPS | 1992 | до 15 кбит/с | до 30 км | 400–890 МГц | США, Канада, Австралия. В данный момент почти не используется | Цифровой стандарт сохранявший совместимость с аналоговым AMPS |
GSM | 1992 | до 9.6 кбит/с | до 120 км | 824–894 МГц (GSM-850), 890–960 МГц (GSM-900), 1710–1880 МГц (GSM-1800) и 1850–1990 МГц (GSM-1900) | Страны Европы, а позже и весь мир | Первый полностью цифровой стандартизированный сотовый стандарт. Дал возможность отправлять SMS | |
2.5G | GPRS | 1996 | до 171.2 кбит/c | до 40 км | Все частоты GSM | Страны Европы, а позже и весь мир | Надстройка над GSM, которая позволила передавать пакетные данные напрямую через шлюзы Интернет-провайдера, а не через наземные телефонные линии |
2.75G | EDGE | 2003 | до 474 кбит/с | до 4 км | Все частоты GSM | США, а позже и весь мир | Надстройка над GSM, которая позволила передавать пакетные данные напрямую через шлюзы Интернет-провайдера, а не через наземные телефонные линии |
3G | CDMA | 1995 | до 500 Мбит/с (EV-DO Rev.D) | до 35 км | 1.25–2100 МГц | США, а позже и весь мир | Первая широкополосная система передачи данных с разделением потоков по специальному коду. Имеет несколько спецификаций, которые могут быть совместимы (WCDMA) или несовместимы с GSM (CDMA2000). |
UMTS | 2004 | до 7.2 Мбит/с | до 1.5 км | Разные в разных странах. У нас 1885–2200 МГц | Европа, а позже и весь мир | Используя наработки WCDMA, стандарт был разработан для обеспечения совместимости с GSM-сетями. | |
3.5G | HSPA | 2006 | до 14.4 Мбит/с | до 2 км | Диапазон UMTS | Европа, а позже и весь мир | Надстройка над системой UMTS, обеспечивающая более оптимальное использование канала связи. |
3.75G | HSPA+ | 2009 | до 42.2 Мбит/с | до 2 км | Диапазон UMTS | Европа, а позже и весь мир | Улучшение системы HSPA. Переходный стандарт между 3G и 4G. |
4G | LTE | 2012 | до 326.4 Мбит/с (LTE-A) | до 19.7 км | 1400–2000 МГц | США, а позже и весь мир | Является потомком GSM, но несовместим со стандартами 2G и 3G. |
WiMAX | 2010 | до 75 Мбит/с | до 80 км | 1.5–11 ГГц | Страны дальнего востока, а позже и весь мир | Улучшение системы HSPA. Переходный стандарт между 3G и 4G. |
Технологии в наше время не стоят на месте. А в плане развития сотовой связи инновации появляются практически ежегодно! Ещё не все до конца поняли, что такое 3G, как уже внедряются стандарты 4-го поколения, а поговаривают и о тестировании 5G!
Одно можно сказать точно, что связь со временем, скорее всего, полностью перейдёт из плоскости наземных телефонных линий в плоскость различных онлайн-сервисов. Доступ к ним будет обеспечен внедрением широкополосных беспроводных стандартов с улучшенным покрытием. Например, уже в прошлом году компания Мегафон в России тестировала возможность передачи данных на скоростях до 4.2 Гбит/с, а в этом году МТС совместно с Nokia фактически подготовили базу для внедрения сетей 5G!
Так что уже через пару-тройку лет наши мобильники вполне могут стать настоящими видеофонами и мы будем не только слышать, но и всегда видеть наших собеседников!
P.S. Разрешается свободно копировать и цитировать данную статью при условии указания открытой активной ссылки на источник и сохранения авторства Руслана Тертышного.
—> —> ad S5 / —>
Получать обновления: |
—>
Миллионы людей каждый день наслаждаются неизменно высокой скоростью и невероятным покрытием сотовой связи. Но большинство не знакомо с технологией, на которой основан стандарт LTE. Но есть же еще и 4G (разворачивается и 5G — про нее в отдельной статье). Чем они отличаются друг от друга и в чем разница?
Ответы на эти и другие основные вопросы представлены в статье простым и доступным языком. Приведено описание и история развития формата сотовой связи.
Что такое LTE
Long Term Evolution или LTE — это сетевой стандарт, разработанный для обеспечения повышенной скорости и эффективности мобильной широкополосной связи. В сущности это стало первым этапом спецификации нового поколения.
Мы часто видим данную спецификацию в маркетинговых материалах как «4G LTE». Но, в действительности, это не соответствует требованиям четвертого поколения мобильной связи и часто упоминается как 3.95G (по отношению к предыдущему поколению).
История продвижения 4G LTE
Протокол разработан Партнерским проектом 3-го поколения (3GPP), группой, отвечающей за 2G GSM и технологию UMTS 3G, на которой выстроен стандарт LTE.
Основная цель — модернизация беспроводных сетей с использованием более современных методов цифровой обработки сигналов. Что в конечном итоге увеличила скорость и пропускную способность сотовой связи.
Тем не менее, стандарт LTE служит для упрощения различных сетевых технологий по всему миру. Учитывая, что тип используемой связи варьируется между территориями.
В случае США и Канады технология, основанная на связи множественного доступа с кодовым разделением (CDMA), была более популярной, в отличие от GSM, который был популярен в Европе. Это имело место в течение 80-х и 90-х годов, пока не начались усилия по созданию интерфейса для отдельного радиочастотного спектра. Что делало его несовместимым со стандартами того времени. Но таким, который мог бы принять каждый.
Идея была впервые предложена в 2004 г. NTT Docomo, крупнейшим оператором мобильной телефонии Японии. Но только в 2007 году сформировали глобальный альянс поставщиков и операторов для содействия внедрению, известный как Инициатива по испытанию LTE / SAE (SAE является базовой инфраструктурой).
Первая услуга стала доступной в конце 2009 г. в Осло и Стокгольме. Вскоре за ними последовало большинство крупных мобильных операторов США в 2010 году, согласившиеся уйти от CDMA.
Стандарт LTE и 4G — в чем разница и отличие
Лучше всего представить LTE, как первая попытка приблизиться к беспроводной технологии четвертого поколения. Но они так и не достигли требуемых характеристик. Это, безусловно, технологический скачок по сравнению с предыдущим форматом, но есть и недостатки. Поэтому его иногда называют 3.95G.
Надеялись, что он осуществит мечту о технологии четвертого поколения — увеличение загрузки до 1000 Мбит/с и передачи 500 Мбит/с.
Международный союз электро- и радиосвязи МСЭ-R (организация, отвечающая за управление международным сектором радиосвязи), первоначально изложил желаемые ожидания еще в 2008 г. Ряд различных предлагаемых стандартов не смогли достичь полного достижения требования по итогам оценок МСЭ-R в 2010 году, которые выявили пиковые скорости загрузки 100 Mb/s и исходящей — 30 Mb/s.
Это создало проблему для рынка. Так как операторы, перешедшие на новый коммутируемый доступ, предлагали значительно более качественный и быстрый сервис, в отличие от 3G. Но не могли его продавать как таковые. В конечном счете, в значительной степени из-за рыночного давления, стандарт LTE разрешили для продажи как четвертое поколение мобильной связи. Даже несмотря на то, что он далеко не подходил под заявленные условия.
LTE Advanced
LTE-A (Advanced) разработан, чтобы стать новым этапом, приближая свои параметры к следующему поколению.
Поскольку стандарт LTE часто продается как 4G LTE, МСЭ-R обозначил Advanced как «True4G». Теперь он способен удовлетворять скорости загрузки 1000 Mb/s и исходящей — 500 Mb/s. Однако, с точки зрения широкой маркетинговой тактики поставщиков, невероятно сложно понять, какие характеристики на самом деле предлагаются.
Основным компонентом LTE-A и тем, что обеспечивает более высокие скорости, является агрегация (объединение) несущих частот, увеличивающая общую пропускную способность. Это позволяет устройствам объединять до пяти несущих.
В действительности, технические показатели для этой сотовой связи, никогда не достигают того, что фактически получает конечный пользователь.
Мировой рынок сегодня
Основываясь на заключении Глобальной ассоциации поставщиков мобильных устройств (GSA), на данный момент существует 304 коммерчески запущенных сети LTE-A, распределенных по 134 странам.
Кроме того, около 335 операторов в 141 стране инвестируют в LTE-Advanced. И включает в себя испытания, тесты и полное развертывание. Причем многие из них хотят включить в свои услуги последние версии стандарта.
По состоянию на август 2019 г. существует лишь несколько регионов, где нет услуг LTE любого вида. Нигер и Ниуэ стали двумя самыми последними странами, внедрившими данную технологию. Это означает, что места для обнаружения рассматриваемой связи в основном находятся в Африке, в частности в Центральноафриканской Республике и Джибути. А также на территориях с удаленными островами. Экваториальная Гвинея, Южный Судан, Западная Сахара, Мавритания, Эритрея по-прежнему не имеют данных услуг, а также Куба и Северная Корея.
С позиции лидеров рынка, Южная Корея продолжает доминировать как лучшее место в мире по быстроте загрузки. Фактически, согласно последнему отчету OpenSignal, региону удалось превзойти 50 Мбит/с. В то время как мировое среднее значение все еще составляет менее 20 Мбит/с. Далее следует Норвегия со скоростью 48,2 Мбит/с, а затем Канада — до 42 Мбит / с.
По скорости, Соединенные Штаты Америки занимают 30-ю строчку рейтинга, но немного выше среднего по рынку в 21,3 Мбит / с.
Тем не менее, где США добиваются особенно хороших результатов, это наличие стандарта LTE. В настоящее время глобальная средняя доступность составляет около 80% в 87 оцененных регионах. Однако 15 из них обеспечивают 90%, в том числе США (5-е место), что особенно впечатляет, учитывая географический масштаб страны.
Пишите в комментариях ниже какую информацию добавить или убрать по теме: стандарт LTE и 4G — в чем разница и отличие. Открыт для предложений по оформлению и наполнению страницы.
Разберёмся что такое LTE в смартфоне, и чем оно отличается от привычного 3G. Какие технологии передачи данных предлагают сети четвёртого поколения, и что это даст пользователям?
Что такое LTE
Многие смартфоны поддерживают LTE, но пока не всем пользователям известно, что это значит.
РекламаLTE (буквально с англ. Long-Term Evolution — долговременное развитие, часто обозначается как 4G LTE) – стандарт связи для быстрой беспроводной передачи информации в любых объёмах. Разработан для смартфонов и других мобильных устройств, которым требуется высокоскоростное соединение с интернетом.
Стандарт является промежуточным этапом в переходе от 3G к 4G. Подключение к такой сети значительно увеличивает скорость передачи данных как загрузки, так и выгрузки. Но несмотря на это, он не дотягивает до технических характеристик, принятых для очередного четвёртого поколения связи.
Технология передачи данных
Сеть нового поколения предоставляет возможность соединения на скорости до 100 Мбит/сек (теоретически максимальная скорость). В реальности она на порядок ниже, все равно технология значительно опережает предыдущий стандарт. В основе лежит пакетная передача данных MIMO, и система кодирования OFDM. Благодаря распределению передающих антенн корреляционная зависимость полностью исключена. В разных странах связь работает на различных диапазонах. Даже разные операторы связи внутри страны нередко используют различные частотные диапазоны.
Сравнение с 3G
Если сравнить два последних поколения сети, действующее и только развивающееся, то получатся следующие выводы:
- 4G обеспечивает передачу данных со скоростью в сотни раз выше предыдущего поколения;
- разная технология передачи данных, полностью пакетная в новой и коммутация каналов и пакетов в предыдущей;
- наличие VoIP в 4G;
- возможность интеграции с E-Ultra;
- стабильность связи даже при высоких скоростях перемещения объекта.
Все это несомненные превосходства новой сети. Но есть и недостатки, 3G за время своего существования может похвастаться обширной зоной покрытия. LTE сегодня присутствует только в ряде крупных городов страны.
LTE и 4G
Оба стандарта относятся к одному поколению, они имеют ряд отличий. Эти технологии нельзя считать одним и тем же.
В чём разница, у LTE по сравнению с 4G:
- более низкая скорость выгрузки данных;
- низкая пропускная способность (ЛТЕ – 150 Мб/с, 4G – до 1 Гб.);
- ниже скорость приёма.
Плюсы использования в телефонах и планшетах
Какие преимущества для пользователей несёт внедрение новых стандартов связи?
LTE в телефоне:
- просмотр видео в высоком качестве без задержек;
- использование видеосвязь для звонков и для видеоконференций;
- эффективное использование в качестве роутера для раздачи WiFi.
Увеличение скорости передачи данных способствует расширению услуг и снижению их стоимости.
Какие операторы предоставляют в России
Все ведущие компании предоставляют абонентам такую возможность. Также операторы снабжают пользователей модемами и карманными роутерами, для доступа в сеть.
- Мегафон имеет широкую зону покрытия, но более высокую стоимость услуг в отличие от конкурентов. Предлагает до 40 Гб ежемесячно, для доступа к интернету через LTE подключается отдельная опция.
- МТС имеет меньшую зону покрытия. Абонентская плата за услуги связи ниже чем у предыдущего конкурента, а объёмы ограничиваются 25 Гб.
- Билайн предоставляет специальную сим-карту с поддержкой LTE. Стоит отметить, что зона покрытия этого оператора шире, чем у МТС.
- Теле2 также внедряет LTE. Но пока доступ есть только в крупных городах.
Как подключиться к LTE
Если смартфон поддерживает LTE, то для подключения достаточно иметь правильно настроенную точку доступа. Как только гаджет окажется в зоне покрытия 4G, он автоматически переключится на высокоскоростную сеть.
Ряд моделей смартфонов отлично переключится на LTE, но как только покидают зону покрытия не могут самостоятельно вернуться к 3G. Они не видят сети, и чтобы вновь появилась возможность использования интернета необходимо перезагрузить устройство.
- <label> Issue:*</label>
- <label> Your Name:*</label>
- <label> Your Email:*</label>
- <label> Details:*</label>
Используемые источники:
- https://www.bestfree.ru/article/device/cell-standards.php
- https://elcomienzo.ru/standart-lte/
- https://wirelesscover.ru/internet/lte