Содержание
Краткий курс — основы компьютерных сетей. В этом материале я расскажу (сжато) об основах компьютерных сетей. Статья предназначена для начинающих, а так же будет полезна школьникам старших классов и студентам. Начнем с базовых определений.
Сеть – совокупность систем связи и систем обработки информации, которая может использоваться несколькими пользователями.
Компьютерная сеть – сеть, в узлах которой содержатся компьютеры и оборудование коммуникации данных.
Вычислительная сеть – соединенная каналами связи система обработки данных, ориентированная на конкретного пользователя.
Компьютерная сеть — представляет собой систему распределенной обработки информации. Что тут важно. Важно то, что в распределенной системе не важно откуда и с какого устройства вы заходите. Вы можете войти в сеть с любого устройства (персональный компьютер, ноутбук, планшетный компьютер, телефон) из любой точки мира где есть интернет.
Краткая история развития компьютерных сетей
Компьютерные сети появились в результате развития телекоммуникационных технологий и компьютерной техники. То есть появились компьютеры. Они развивались. Были телекоммуникационные системы, телеграф, телефон, то есть связь. И вот люди думали, хорошо было бы если бы компьютеры могли обмениваться информацией между собой. Эта идея стала основополагающей идеей благодаря которой появились компьютерные сети.
50-е годы: мейнфреймы
В 50-х года 20-го века появились первые «компьютеры» — мейнфреймы. Это были большие вычислительные машины которые могли занимать по площади современный спортивный зал. Вычислительные мощности были не большие, но факт в том что вычисления уже производила машина.
Начало 60-х годов: многотерминальные системы
В дальнейшем к одному мейнфрейму стали подключать несколько устройств ввода-вывода, появился прообраз нынешних терминальных систем да и сетей в целом.
70-е годы: первые компьютерные сети
?0-е годы, время холодной войны. СССР и США сидели возле своих ракет и думали кто же атакует (или не атакует) первым. Центры управления ракетами США располагались в разных местах удаленных друг от друга. Если в одном центре производится запуск ракет, после которого в центр попадает ракета врага, то вся информация в этом центре — утеряна. Управление перспективных исследовательских проектов Министерства обороны США (Defense Advanced Research Projects Agency (DARPA)) ставит перед учеными задачу — разработать технологию которая позволяла бы передавать информацию из одного стратегического центра в другой на случай его уничтожения.
В 1969 году появляется ARPANET (от англ. Advanced Research Projects Agency Network) — первая компьютерная сеть созданная на основе протокола IP который используется и по сей день. За 11 лет ARPANET развивается до сети способной обеспечить связь между стратегическими объектами вооруженных сил США.
Середина 70-х годов: большие интегральные схемы
На основе интегральных схем появляются «мини компьютеры». Они начинают выходить за пределы министерства обороны и постепенно внедряются в повседневную жизнь. За компьютерами начинают работать бухгалтера, менеджеры, компьютеры начинают управлять производством. Появляются первые локальные сети.
Сетевая технология – согласованный набор программных и аппаратных средств (драйверов, сетевых адаптеров, кабелей и разъемов), а также механизмов передачи данных по линиям связи, достаточный для построения вычислительной сети.
В период с 80-х до начала 90-х годов появились и прочно вошли в нашу жизнь:
- Ethernet.
- Token Ring.
- Arcnet.
- FDDI (Fiber Distributed Data Interface) — волоконнооптический интерфейс передачи данных.
- TCP/IP используется в ARPANET.
- Ethernet становится лидером среди сетевых технологий.
- В 1991 году появился интернет World Wide Web.
Общие принципы построения сетей
Со временем основной целью компьютерных развития сетей (помимо передачи информации) стала цель распределенного использования информационных ресурсов:
- Периферийных устройств: принтеры, сканеры и т. д.
- Данных хранящихся в оперативной памяти устройств.
- Вычислительных мощностей.
Достичь эту цель помогали сетевые интерфейсы. Сетевые интерфейсы это определенная логическая и/или физическая граница между взаимодействующими независимыми объектами.
Сетевые интерфейсы разделяются на:
- Физические интерфейсы (порты).
- Логические интерфейсы (протоколы).
Порт
Из определения обычно ничего не ясно. Порт и порт, а что порт?
Начнем с того что порт это цифра. Например 21, 25, 80.
Это число записывается в заголовках протоколов транспортного уровня (об этом ниже). Порт указывает для какой программы предназначен тот или иной пакет (грубо говоря та или иная информация). Например, http-сервер работает через порт 80. Когда вы открываете браузер, вы отправляете запрос на веб-сервер через 80 порт и сервер понимает что это http запрос и вам нужен сервер который передаст вам страницу в формате html (ответ сервера).
Протокол
Протокол, например TCP/IP это адрес узла (компьютера) с указанием порта и передаваемых данных. Например что бы передать информацию по протоколу TCP/IP нужно указать следующие данные:
Пара клиент—сервер
Начнем с определений.
Клиент — это модуль, предназначенный для формирования и передачи сообщений-запросов к ресурсам удаленного компьютера от разных приложений с последующим приемом результатов из сети и передачей их соответствующим приложениям.
Проще говоря Сервер — это компьютер на котором установлена программа, или принтер. Клиент — это компьютер который подключается к программе, работает с ней и распечатывает какие-либо результаты, например.
При этом программа может быть установлена на Клиенте, а база данных программы на Сервере.
Топология физических сетей
Под топологией сети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационной оборудование (например, маршрутизаторы), а ребрам – физические или информационные связи между вершинами.
- Полносвязная (а).
- Ячеистая (б).
- Кольцо (в).
- Звезда (г).
- Дерево (д).
- Шина (е).
Основных топологий сети 6. В целом тут все просто. На сегодняшний день наиболее распространенная топология — Дерево.
Адресация узлов сети
Для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешения адресов.
Коммутация
Соединение конечных узлов через сеть транзитных узлов называют коммутацией. Последовательность узлов, лежащих на пути от отправителя к получателю, образует маршрут.
Обобщенные задачи коммутации
- Определение информационных потоков, для которых требуется прокладывать маршруты.
- Маршрутизация потоков.
- Продвижение потоков, то есть распознавание потоков и их локальная коммутация на каждом транзитном узле.
- Мультиплексирование и демультиплексирование потоков.
Уровни сетевой модели OSI и уровни TCP/IP
(OSI) Open System Interconnection — многоуровневая модель взаимодействия открытых систем, состоящая из семи уровней. Каждый из семи уровней предназначен для выполнения одного из этапов связи.
Для упрощения структуры большинство сетей организуются в наборы уровней, каждый последующий возводится над предыдущим.
Целью каждого уровня является предоставление неких сервисов для вышестоящих уровней. При этом от них скрываются детали реализации предоставляемого сервиса.
Протокол – формализованное правило, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах.
Протоколы, реализующие модель OSI никогда не применялись на практике, но имена и номера уровней используются по сей день.
- Физический.
- Канальный.
- Сетевой.
- Транспортный.
- Сеансовый.
- Представления.
- Прикладной.
Для лучшего понимания приведу пример. Вы открываете страницу сайта в интернете. Что происходит?
Браузер (прикладной уровень) формирует запрос по протоколу HTTP (уровень представлений и сеансовый уровень), формируются пакеты, передаваемые на порт 80 (транспортный уровень), на IP адрес сервера (сетевой уровень). Эти пакеты передаются по сетевой карте компьютера в сеть (канальный и физический уровень).
Уровни OSI — краткий обзор
Физический уровень. Если коротко и просто, то на физическом уровне данные передаются в виде сигналов. Если передается число 1, то задача уровня передать число 1, если 0, то передать 0. Простейшее сравнение — связать два пластиковых стаканчика ниткой и говорить в них. Нитка передает вибрацию физически.
Канальный уровень. Канальный уровень это технология каким образом будут связаны узлы (передающий и принимающий), тут вспоминает топологию сетей: кольцо, шина, дерево. Данный уровень определяет порядок взаимодействия между большим количеством узлов.
Сетевой уровень. Объединяет несколько сетей канального уровня в одну сеть. Есть, например, у нас кольцо, дерево и шина, задача сетевого уровня объединить их в одну сеть, а именно — ввести общую адресацию. На этом уровне определяются правила передачи информации:
- Сетевые протоколы (IPv4 и IPv6).
- Протоколы маршрутизации и построения маршрутов.
Транспортный уровень обеспечивает надежность при передачи информации. Он контролирует отправку пакетов. Если пакет отправлен, то должно придти (на компьютер который отправлял пакет) уведомление об успешной доставке пакета. Если уведомление об успешной доставке не поступило то нужно отправить пакет еще раз. Например TCP и UDP.
Сеансовый уровень. Отвечает за управление сеансами связи. Производит отслеживание: кто, в какой момент и куда передает информацию. На этом уровне происходит синхронизация передачи данных.
Уровень представления. Уровень обеспечивает «общий язык» между узлами. Благодаря ему если мы передаем файл с расширением .doc, то все узлы понимают что это документ Word, а не музыка. На этом уровне к передаваемым пакетам данных добавляется потоковое шифрование.
Прикладной уровень. Осуществляет взаимодействие приложения (например браузера) с сетью.
Уровни TCP/IP
Набор протоколов TSP/IP основан на собственной модели, которая базируется на модели OSI.
- Прикладной, представления, сеансовый = Прикладной.
- Транспортный = Транспортный.
- Сетевой = Интернет.
- Канальный, физический = Сетевой интерфейс.
Уровень сетевого интерфейса
Уровень сетевого интерфейса (называют уровнем 2 или канальным уровнем) описывает стандартный метод связи между устройствами которые находятся в одном сегменте сети.
Сегмент сети — часть сети состоящая из сетевых интерфейсов, отделенных только кабелями, коммутаторами, концентраторами и беспроводными точками доступа.
Этот уровень предназначен для связи расположенных недалеко сетевых интерфейсов, которые определяются по фиксированным аппаратным адресам (например MAC-адресам).
Уровень сетевого интерфейса так же определяет физические требования для обмена сигналами интерфейсов, кабелей, концентраторов, коммутаторов и точек доступа. Это подмножество называют физическим уровнем (OSI), или уровнем 1.
Например, интерфейсы первого уровня это Ethernet, Token Ring, Point-to-Point Protocol (PPP) и Fiber Distributed Data Interface (FDDI).
Немного о Ethernet на примере кадра web-страницы
Пакеты Ethernet называют кадрами. Первая строка кадра состоит из слова Frame. Эта строка содержит общую информацию о кадре.
Далее в кадре располагается заголовок — Ethernet.
После заголовка кадра идет заголовок протокола IPv4, TCP и HTTP.
В конце идет заголовок HTTP с запросом GET (GET — один из вариантов запроса к веб-серверу).
Таким образом цель кадра — запрос содержимого веб-страницы которая находится на удаленном сервере.
В полном заголовке Ethernet есть такие значения как DestinationAddress и SourceAddress которые содержат MAC-адреса сетевых интерфейсов.
DestinationAddress показывает MAC шлюза в локальной сети, а не веб-сервера, так как протоколы 2-го уровня «не видят» дальше локальной сети.
Поле EthernetType указывает на следующий протокол более высокого уровня в кадре (IPv4).
Коммутаторы считывают адреса устройств локальной сети и ограничивают распространение сетевого трафика только этими адресами. Поэтому коммутаторы работают на уровне 2.
Уровень Интернета
Уровень интернета называют сетевым уровнем или уровнем 3. Он описывает схему адресации которая позволяет взаимодействовать устройствам в разных сетевых сегментах.
На уровне интернета преимущественно работает протокол IP, работающие на уровне 3 устройства — маршрутизаторы. Маршрутизатор читает адрес назначения пакета, а затем перенаправляет сообщение по соответствующему пути в пункт назначения. Подробнее о маршрутизации вы можете почитать в статье маршрутизация в windows.
Если адрес в пакете относится к локальной сети или является широковещательным адресом в локальной сети, то по умолчанию такой пакет просто отбрасывается. Поэтому говорят, что маршрутизаторы блокируют широковещание.
Стек TCP/IP реализован корпорацией Microsoft ну уровне интернета (3). Изначально на этом уровне использовался только один протокол IPv4, позже появился протокол IPv6.
IPv4
Протокол версии 4 отвечает за адресацию и маршрутизацию пакетов между узлами в десятках сегментах сети. IPv4 использует 32 разрядные адреса. 32 разрядные адреса имеют довольно ограниченное пространство, в связи с этим возникает дефицит адресов.
IPv6
Протокол версии 6 использует 128 разрядные адреса. Поэтому он может определить намного больше адресов. В интернете не все маршрутизаторы поддерживают IPv6. Для поддержки IPv6 в интернете используются туннельные протоколы.
В Windows по умолчанию включены обе версии протоколов.
Транспортный уровень
Транспортный уровень модели TCP/IP представляет метод отправки и получения данных устройствами. Так же он создает отметку о предназначении данных для определенного приложения. В TCP/IP входят два протокола транспортного уровня:
- Протокол TCP. Протокол принимает данные у приложения и обрабатывает их как поток байт.Байты группируются, нумеруются и доставляются на сетевой хост. Получатель подтверждает получение этих данных. Если подтверждение не получено, то отправитель отправляет данные заново.
- Протокол UDP.Этот протокол не предусматривает гарантию и подтверждение доставки данных. Если вам необходимо надежное подключение, то стоит использовать протокол TCP.
Прикладной уровень
Общие сведения о локальных сетях
локальный сеть вычислительный сервер
Локальнаясеть (локальная вычислительная сеть, ЛВС) — это комплекс оборудования и программного обеспечения, обеспечивающий передачу, хранение и обработку информации.
Назначение локальных сетей
Организация ЛВС позволяет решать следующие задачи:
- 1. Обмен информацией между абонентами сети, что позволяет сократить бумажный документооборот и перейти к электронному документообороту.
- 2. Обеспечение распределенной обработки данных, связанное с объединением автоматизированного рабочего места (АРМ) всех специалистов данной организации в сеть. Несмотря на существенные различия в характере и объеме расчетов, проводимых на АРМ специалистами различного профиля, используемая при этом информация в рамках одной организации находится в единой базе данных, поэтому объединение таких АРМ в сеть является целесообразным и эффективным решением.
- 3. Предоставлять руководству достоверную и оперативную информацию, необходимую для оценки ситуации и принятия правильных решений.
- 4. Организация собственных информационных систем, содержащих автоматизированные банки данных.
- 5. Коллективное использование ресурсов, таких как высокоскоростные печатающие устройства, запоминающие устройства большой емкости, мощные средства обработки информации, прикладные программные системы, базы данных, базы знаний.
Состав локальной сети
В состав локальной сети (ЛВС) входит следующее оборудование:
Активное оборудование — коммутаторы, маршрутизаторы, медиаконвекторы;
Пассивное оборудование — кабели, монтажные шкафы, кабельные каналы, коммутационные панели, информационные розетки;
Компьютерное и периферийное оборудование — серверы, рабочие станции, принтеры, сканеры.
В зависимости от требований, предъявляемых к проектируемой сети, состав оборудования, используемый при монтаже может варьироваться.
Основные характеристики локальной сети
1. Производительность ЛВС оценивается:
a) временем реакции на запросы клиентов ЛВС;
b) пропускной способностью, равной количеству данных, передаваемых за единицу времени;
c) задержкой передачи пакета данных устройствами сети.
- 2. Надежность. Для оценки надежности ЛВС вводятся такие характеристики, как коэффициент готовности и устойчивости к отказам, т.е. способность работать при отказе части устройств. Сюда же относят и безопасность, т.е. способность ЛВС защищать данные от несанкционированного доступа к ним.
- 3. Расширяемость характеризует возможность добавления новых элементов и узлов в ЛВС.
- 4. Управляемость — это возможность контролировать состояние узлов ЛВС, выявлять и разрешать проблемы, возникающие при работе сети, анализировать и планировать работу ЛВС.
- 5. Совместимость — это возможность компоновки ЛВС на основе разнородных программных продуктов.
Топология локальных сетей
Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.
Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.
Топология бывает физической и логической.
Физическаятопология— схема, по которой проложены кабельные линии связи.
Логическаятопология— структура связи конечных узлов в локальной сети, которая поддерживает нужные нам направления передачи данных.
Существует четыре основные топологии сети:
Шиннаятопология— сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема (Т — коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных. (рисунок 1) Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.
Рисунок 1 Физическая топология шина
Топологиязвезда— в сети построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или свитчу (switch). Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом. (рисунок 2)
Рисунок 2 Физическая топология звезда
Данные от передающей станции сети передаются через свитч по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.
Топологиякольцо— в сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. (рисунок 3) Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.
Рисунок 3 Физическая топология кольцо
Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети — логическое кольцо.
Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.
Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.
ТопологияTokenRing. Эта топология основана на топологии «физическое кольцо с подключением типа звезда». В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор — это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.
Другими словами, с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой, и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.
Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не влечёт за собой отказ сети как в топологии кольцо, потому что концентратор отключит неисправную станцию и замкнет кольцо передачи данных. (рисунок 4)
Рисунок 4 Физическая топология Token Ring
В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.
Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.
Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.
На практике нередко используют и другие топологии локальных сетей, однако большинство сетей ориентировано именно на четыре основные топологии.
Виды локальных сетей
Все современные локальные сети делятся на два вида:
Одноранговыелокальныесети— сети, где все компьютеры равноправны: каждый из компьютеров может быть и сервером, и клиентом. Пользователь каждого из компьютеров сам решает, какие ресурсы будут предоставлены в общее пользование и кому.
Локальныесетисцетрализованнымуправлением. В сетях с централизованным управлением политика безопасности общая для всех пользователей сети.
Какое сетевое оборудование используется при создании проводной локальной сети
В любой организации, где есть два и более компьютера, их целесообразно объединить в локальную сеть. Сеть позволяет сотрудникам быстро обмениваться между собой информацией и документами, служит для совместного использования общего доступа в интернет, оборудования и устройств хранения информации.
Для объединения компьютеров нам понадобится определенное сетевое оборудование. В сегодняшней статье мы рассмотрим, какое оборудование применяется при создании проводной локальной сети.
Сетевое оборудование – устройства, из которых состоит компьютерная сеть. Условно выделяют два вида сетевого оборудования:
- Активное сетевое оборудование – оборудование, которое способно обрабатывать или преобразовывать передаваемую по сети информацию. К такому оборудованию относятся сетевые карты, маршрутизаторы, принт-серверы.
- Пассивное сетевое оборудование – оборудование, служащее для простой передачи сигнала на физическом уровне. Это сетевые кабели, коннекторы и сетевые розетки, повторители и усилители сигнала.
Для монтажа проводной локальной сети нам в первую очередь понадобятся:
- сетевой кабель и разъемы (называемые коннекторами);
- сетевые карты – по одной в каждом ПК сети, и две на компьютере, служащем сервером для выхода в интернет;
- устройство или устройства, обеспечивающие передачу пакетов между компьютерами сети. Для сетей из трех и более компьютеров нужно специальное устройство – коммутатор, который объединяет все компьютеры сети;
- дополнительные сетевые устройства. Простейшая сеть строится и без такого оборудования, однако при организации общего выхода в интернет, использовании общих сетевых принтеров дополнительные устройства могут облегчить решение подобных задач.
Теперь рассмотрим подробнее всё перечисленное выше оборудование:
Сетевые проводники
В эту группу входят различные сетевые кабели (витая пара, коаксиальный кабель, оптоволокно).
Коаксиальный кабель – это первый кабель, который применялся для создания сетей. От его использования при построении локальных компьютерных сетей уже давно отказались.
Оптоволоконный кабель – наиболее перспективный в плане скоростных показателей, но и более дорогой по сравнению с коаксиальным кабелем или витой парой. К тому же монтаж оптоволоконных сетей требует высокой квалификации, а для оконцовки кабеля необходимо дорогостоящее оборудование. По этим причинам широкого распространения данный вид кабеля пока не получил.
Витая пара – самый распространенный на сегодняшний день вид кабеля, применяемый для построения локальных сетей. Кабель состоит из попарно перевитых медных изолированных проводников. Типичный кабель несет в себе 8 проводников (4 пары), хотя выпускается и кабель с 4 проводниками (2 пары). Цвета внутренней изоляции проводников строго стандартны. Расстояние между устройствами, соединенными витой парой, не должно превышать 100 метров. Существует несколько категорий кабелей типа витая пара, которые маркируются от CAT1 до CAT7. В локальных сетях стандарта Ethernet используется витая пара категории CAT5.
Для работы с кабелем витая пара применяются коннекторы RJ-45.
Сетевые карты
Сетевые карты отвечают за передачу информации между компьютерами сети. Сетевая карта состоит из разъема для сетевого проводника (обычно, витой пары) и микропроцессора, который кодирует/декодирует сетевые пакеты. Типичная сетевая карта представляет собой плату, вставляемую в разъем шины PCI. Практически во всех современных компьютерах электроника сетевого адаптера распаяна непосредственно на материнской плате. Вместо внутренней сетевой карты можно использовать внешний сетевой адаптер USB:Он представляет собой переходник USB-LAN и имеет схожие функции со своими PCI-аналогами. Главным достоинством сетевых карт USB является универсальность: без вскрытия корпуса системного блока такой адаптер можно подключить к любому ПК, где есть свободный порт USB. Также USB адаптер будет незаменим для ноутбука, в котором вышел из строя единственный встроенный сетевой разъем, или возникла необходимость в двух сетевых портах.
Сетевые коммутаторы
Не так давно для построения локальных сетей применялись сетевые концентраторы (или, в просторечии, хабы). Когда сетевая карта отсылает пакет данных с компьютера в сеть, хаб просто усиливает сигнал и передает его всем участникам сети. Принимает и обрабатывает пакет только та сетевая карта, которой он адресован, остальные его игнорируют. По сути, концентратор – это усилитель сигнала.
В настоящее время в локальных сетях применяются коммутаторы (или, как их называют, свитчи). Это более “интеллектуальные” устройства, где есть свой процессор, внутренняя шина и буферная память. Если концентратор просто передает пакеты от одного порта ко всем остальным, то коммутатор анализирует адреса сетевых карт, подключенных к его портам, и переправляет пакет только в нужный порт. В результате бесполезный трафик в сети резко снижается. Это позволяет намного увеличить производительность сети и обеспечивает большую скорость передачи данных в сетях с большим количеством пользователей.Коммутатор может работать на скорости 10, 100 или 1000 Мбит/с. Это, а также установленные на компьютерах сетевые карты, определяет скорость сегмента сети. Другая характеристика коммутатора – количество портов. От этого зависит количество сетевых устройств, которые можно подключить к коммутатору. Помимо компьютеров, ими являются принт-серверы, модемы, сетевые дисковые накопители и другие устройства с LAN-интерфейсом.
При проектировании сети и выборе коммутатора нужно учитывать возможность расширения сети в дальнейшем – лучше приобретать коммутатор с несколько большим количеством портов, чем число компьютеров в вашей сети на данный момент. Кроме того, один порт нужно держать свободным на случай объединения с другим коммутатором. В настоящее время коммутаторы соединяются обычной витой парой пятой категории, точно такой же, которая используется для подключения каждого компьютера сети к коммутатору.
Коммутаторы бывают двух видов – управляемые и неуправляемые. Управляемые обладают дополнительной функциональностью. Так, появляется возможность управления коммутатором с помощью веб-интерфейса, объединения нескольких коммутаторов в один виртуальный со своими правилами коммутации пакетов и т.д. Стоимость управляемых коммутаторов гораздо выше стоимости неуправляемых, поэтому в малых и средних сетях используются неуправляемые коммутаторы.
Дополнительное сетевое оборудование
В локальной сети можно использовать различное дополнительное оборудование, например, чтобы объединить две сети или обеспечить защиту сети от внешних атак. Кратко рассмотрим сетевое оборудование, которое применяется при построении компьютерных сетей.
Принт-сервер, или сервер печати – это устройство, которое позволяет подключить принтер, не имеющий собственного сетевого порта к сети. Проще говоря: принт-сервер – это коробка, к которой с одной стороны подключается принтер, а с другой стороны — сетевой провод. При этом принтер становится доступным в любое время, поскольку не привязан к какому-либо компьютеру сети. Существуют принт-серверы с разными портами: USB и LPT; так же встречаются и комбинированные варианты.Повторитель предназначен для увеличения расстояния сетевого соединения путем усиления электрического сигнала. Если вы будете использовать в локальной сети кабель витая пара длиной более 100 метров, повторители должны устанавливаться в разрыв кабеля через каждые 100 метров. Питание повторителей обычно осуществляется по тому же кабелю. С помощью повторителей можно соединить сетевым кабелем несколько отдельно стоящих зданий.Маршрутизатор (или роутер) – сетевое устройство, которое на основании информации о структуре сети по определенному алгоритму выбирает маршрут для пересылки пакетов между различными сегментами сети.
Маршрутизаторы применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам (например, для подсоединения Ethernet к сети WAN). Также маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя при этом функции межсетевого экрана.Маршрутизатор может быть представлен не только в аппаратном виде, но и в программном. Любой компьютер сети, на котором установлено соответствующее программное обеспечение, может служить маршрутизатором.
Метки: локальная сеть, монтаж сети, сетевое оборудование
Используемые источники:
- https://abuzov.com/osnovy-kompjuternyh-setej/
- https://vuzlit.ru/398936/vvedenie
- http://blogsisadmina.ru/seti/kakoe-oborudovanie-neobxodimo-dlya-sozdaniya-lokalnoj-seti.html