Как можно увеличить производительность видеокарты, топ-3 метода и примеры

Представьте, что вы решили, скажем, приобрести готовый системный блок — то есть собранный. Читаете к нему описание и видите такое словосочетание — «Дискретная видеокарта». Разумеется, вы сразу набираете в поисковике данное словосочетание и… И попадаете на этот сайт. Сейчас все объясним, разъясним и покажем.

Дискретная видеокарта — это, как правило, видеокарта на отдельной плате, которую вы можете установить в отдельный слот. Иными словами, если видеокарту можно приобрести отдельно от материнской платы, ее принято называть дискретной.

chto-takoe-diskretnaya-videokarta1.jpg

На на деле все чуточку сложнее. Дискретная карт называется так из-за того, что имеет собственную оперативную память (VRAM). Некоторые дискретные видеокарты могут быть впаяны в материнскую плату — такие чаще всего встречается на ноутбуках. Эта видеокарта также будет называться дискретной.

Существует и второй, тоже весьма популярный вид графических адаптеров, — встроенные.

Читайте также:  Почему планшет не включается и что сделать, чтобы исправить это?

Встроенная видеокарта — это интегрированный графический адаптер, который не имеет собственной памяти и использует оперативную память компьютера. Это, в первую очередь, сказывается на производительности устройства — она значительно хуже, чем у дискретных видеокарт.

chto-takoe-diskretnaya-videokarta2.jpg

Большей популярностью пользуются дискретные видеокарты, но, опять же, смотря для чего. Если мы мы говорим о портативных устройствах, в них будет использоваться с большей доли вероятности встроенная видеокарта, в ПК — наверняка дискретная.

Встроенные видеокарты

Встроенные видеокарты поставляются вместе со всей «начинкой» ПК, и правильно называются интегрированными. Почему? Потому что они соединены (интегрированы) напрямую с центральным процессором компьютера, который и служит основным ядром для обработки графики. Интегрированные видеокарты также не имеют собственной видеопамяти, и при необходимости черпают ресурсы вашей оперативной памяти.

videokarta-vstroennaya-ili-diskretnaya-razbiraemsya-kakaya-nuzhna-imenno-vam.jpg Поэтому функциональность таких карт сильно ограничена — ведь у процессора масса других задач, а оперативная память не резиновая. Встроенной видеокарты хватает, чтобы вывести изображение на экран, но больше ресурсов процессор и память отдать на обработку видео не могут. Поэтому на встроенной видеокарте изображение частенько «подтормаживает» и приложения открываются дольше — ведь нагрузка падает на процессор, который и так занят. Особенно часто со встроенной видеокартой интегрируются процессоры Intel, например, вот этот:

Post navigation

К несоответствию технических характеристик, несмотря на одинаковое название, компонентов в ноутбуках и стационарных компьютерах уже все давно привыкли. Компактные размеры корпуса накладывают свои ограничения на внутренние компоненты, поэтому игровой ноутбук всегда был и остается таким компромиссом, если сравнивать с ультимативной стационарной игровой системой, конечно же.

Один из двух игроков рынка игровых видеокарт объявил о запуске нового класса ультра-производительных ноутбуков, спроектированных специально для компьютерных энтузиастов. Сердцем такого ноутбука будет выступать первая десктопная Geforce GTX видеокарта в форм-факторе для ноутбука.

We’re changing that beginning today with the launch of a new class of ultra-performance notebook, designed specifically for PC enthusiasts. At the heart of this new breed of mobile performance powerhouses is the very first desktop GeForce GTX GPU in a notebook form factor.

092315_0517_1.jpg

В каждом, из представленных ниже ноутбуков, игроки смогут найти новый процессор Intel Core 6-го поколения Skylake, которые соответствуют характеристикам своим десктопным аналогам, и новейшую видеокарту от NVIDIA.

In each GeForce GTX 980 notebook you’ll find the GPU gamers the world over know and love, and new Intel Skylake CPUs that are identical to their desktop counterparts.

092315_0517_2.jpg

Игровые ноутбуки представлены от различных производителей, но необычнее всех выглядит модель ASUS GX700VO, которая предлагает внешнее водяное охлаждение компонентов ноутбука, что определенно наилучшим образом скажется на температурном режиме всех компонентов, а не только производительного процессора и видеокарты.

092315_0517_3.jpg

Здесь дадим небольшое пояснение от редакции.

Читайте также:  ROUTERLOGIN.NET — Вход в Роутер Netgear 192.168.1.1, Настройка Password Admin-Admin

На самом деле, даже у технически неподкованного пользователя заявление NVIDIA вызовет вопросы: “как, так десктопная видеокарта размерами с пол 17-дюймового ноутбука и одинаковые характеристики?”.

На самом деле, американская компания одновременно говорит правду, но немножко недоговаривает. Раньше мобильные и десктопные видеокарты с одинаковым индексом (например, 970 и 970M, 980 и 980M) отличались не только тактовыми частотами, но и другими важными параметрами: как частота пропускной способности памяти, количество универсальных шейдерных блоков CUDA и т.д., поэтому даже на одинаковых частотах десктопные версии были более производительнее своих мобильных собратьев, сейчас под громким названием десктопная видеокарта в мобильный ноутбук происходит просто уравнение технических характеристик, но не частот на которых работает чип и память.

Таким образом, при одинаковых частотах десктопная и мобильная версия видеокарты с одинаковым индексом должны будут показывать одинаковую производительность, только в реальной жизни мы такого не увидим, ведь возможности стационарного компьютера существенно с точки зрения рассеивания избыточного тепла от производительных компонентов. Это прекрасно понимают и производители ноутбуков, например, ноутбук ASUS, с внешним водяным охлаждением, сможет предложить пользователю более высоки частоты работы видеокарты.

Аналогичная ситуация с процессорами Skylake, впервые в мобильном сегменте чипы Core i5 будут иметь четыре ядра, раньше это были исключительно двухъядерные процессоры, в то время, как десктопные версии оснащались четырмя ядрами. Но, опять-таки, частоты в мобильном и десктопном сегменте несопоставимы. С другой стороны, производительности мобильных процессоров на высоких настройках графики всегда хватала, так что в высоких разрешениях и настройках графики современных игр, процессор не будет слабым звеном.

092315_0517_4.jpg

А теперь настольные версии процессоров Intel Core 6-го поколения:

092315_0517_5.jpg

В итоге можно сказать, что рост производительности будет как в мобильном, так и настольном сегменте компьютеров, однако, это рост будет эволюционным, а, отнюдь, не революционным.

Поделиться:

Tagged: GeForce NVIDIA

Дискретные видеокарты

Дискретная видеокарта, в отличие от встроенной, совершенно автономна от ЦП и ОЗУ. Она и подключается к ПК обычно отдельно. У нее собственный графический процессор и отдельная видеопамять, которые берут на себя обработку графики, благодаря чему центральный процессор и память могут заниматься задачами операционной системы. Это сильно повышает производительность компьютера и скорость открытия приложений.

Как выбрать видеокарту — Характеристики

Рассмотрим основные характеристики графических адаптеров, на которые следует обратить внимание при выборе.

1. Производитель. На данный момент лучшими являются NVidia и AMD Radeon. Для определенных целей выбирайте своего производителя, например, модели от AMD в некоторых случаях лучше справляются с работой в видео-редакторах.

2. Частота работы процессора. От нее будет зависеть производительность в работе с видео и графикой. Выше — лучше.

Читайте также:  Как узнать состояние жесткого диска: сколько он еще прослужит

3. Тип видео памяти. Выбирать следует наиболее производительный и новый тип ОЗУ, на данный момент это GDDR6.

4. Объем видео памяти. Чем ее больше — тем большую производительность вы получите.

videokarta-chto-eto-5.jpg

5. Частота и ширина шины памяти. Это скорость с которой будут обмениваться данными между собой процессор и память. Чем больше показатель в обоих пунктах — тем лучше, чтобы получить пропускную способность нужно разделить частоту на ширину. К примеру: 192 бит/8 * 8000 Мгц = 192.0 GB/s.

6. Форм фактор. Обаятельно отталкивайтесь от того, какой форм фактор подойдет для вашей материнской платы и корпуса. Смотрите сколько слотов она будет занимать и есть ли для нее место в системном блоке.

7. Система охлаждения — шум. От того, какая установлена на видеоадаптер система охлаждения будет зависеть издаваемый ею шум и нагрев. Почитайте отзывы перед приобретением.

8. Максимальное разрешение. Проверьте, чтобы карта поддерживала разрешение монитора.

9. Разъем. Обязательно посмотрите подойдет ли она к разъему вашего монитора. На матерински платах подключение обычно идет через разъем PCI Express.

Вам хватит встроенной видеокарты…

…если вы используете компьютер для несложных задач: серфинга в Интернете, работы с текстами, просмотра кино. Также это решение для вас, если вы хотите приобрести недорогой ноутбук, ведь встроенная графика дешевле.

videokarta-vstroennaya-ili-diskretnaya-razbiraemsya-kakaya-nuzhna-imenno-vam3.jpg Если Вы ищете ноутбук для работы или учебы, то с целью экономии денег приобретайте модели со встроенными видеокартами. Нет никакой нужды переплачивать за дискретную, если только для работы вам не требуются «тяжелые» графические приложения, типа Photoshop, AutoCad или Adobe Premiere. Вот в этом ноутбуке целых две интегрированных видеокарты — AMD Radeon R5 M420 и Intel HD Graphics 620:

:

Переключение графических адаптеров средствами Windows

Если же разбираться в том, как отключить интегрированную видеокарту на ноутбуке или стационарном ПК более утонченным и в некотором смысле даже безопасным методом, можно посоветовать воспользоваться самым обычным «Диспетчером устройств» (devmgmt.msc).

3226084.jpg

В нем нужно будет обратиться к разделу устройств, отвечающих за графику, выделить встроенный адаптер, а через меню ПКМ произвести клик на пункте деактивации. По идее, дискретная карта включится автоматически. Если этого не произойдет, точно таким же методом включите вторую карту (но обычно это не требуется). Такая методика удобна тем, что при желании вы всегда сможете задействовать встроенный чип без необходимости перезагрузки системы и вмешательства в настройки BIOS.

Вам нужна дискретная видеокарта, если…

…вы геймер. Игры требуют мощных средств обработки графики, так что готовьте деньги. Разве что вы играете в «браузерки» и разные «веселые фермы». Серьезная игра, установленная на ПК, гораздо шустрее пойдет на дискретной видеокарте, которая не будет занята ничем, кроме отрисовки графики игры. Кстати, производители дискретных видеокарт постоянно оптимизируют свои продукты под требования новых игр, выходящих для ПК, так что для дискретной видеокарты желательно регулярно обновлять драйвера.

videokarta-vstroennaya-ili-diskretnaya-razbiraemsya-kakaya-nuzhna-imenno-vam4.jpg

…вы дизайнер, фотограф, художник, инженер-проектировщик или видеопродюсер (или видеоблогер). Рендеринг видео и чертежей, загрузка цифровой графики высокого разрешения и обработка ее фильтрами — все это гораздо быстрее делает дискретная видеокарта. Профессиональная работа с графикой требует отдельного средства для ее обработки: более того, часто даже ее возможностей не хватает, и графическая программа слегка «влезает» в вашу основную оперативную память, используя ее ресурсы — так что позаботьтесь, чтобы ОЗУ в вашем компьютере тоже было достаточно.

Как мы уже говорили, дискретные видеокарты достаточно дороги. Впрочем, вы можете купить неплохой вариант, уложившись в 10 000 рублей:

Видеокарта, интегрированная в материнскую плату.

Постоянные усовершенствования, происходящие в технологии изготовления микрочипов, позволили создавать всё более маленькие устройства. Что дало возможность производителям встроить графическую видеокарту в материнскую плату.

videokarta-integrirovannaya-v-materinskuyu-platu.jpg В этом случае, чтобы обновить видеокарту нужно изменить всю материнскую плату. Что в этом компоненте сильно уступает дискретным видеокартам. Ещё один явный недостаток — для работы эти устройства используется оперативная память компьютера. Так, как компьютеру приходится делиться оперативной памятью между видеокартой и программами, падает его общая производительность.

Настройки Bios

Переключить основную видеокарту на внешнюю можно и через Bios.

Если у вас нет должного опыта работы в биосе, то не рекомендуется использовать этот способ. Так как есть вероятность отключить что-то важное, после чего компьютер перестанет запускаться.

Не удалось устранить проблему? Обратитесь за помощью к специалисту!

Порядок действий будем следующим:

  1. Чтобы попасть в системное меню, при загрузке ноутбука фирмы необходимо нажать на клавишу «Delete» или «Del». В зависимости от вашей модели ноутбука могут применяться и другие клавиши, например для Sony – это «Assist», для Lenovo — «Novo Button». Или же более простые варианты, например для Асус, Асер (F2, F8).
  1. Ищем пункт, который отвечает за графику (в его названии присутствует слово Graphics). Обычно он находится во вкладках Config либо Advanced. Также в зависимости от версии, надо либо нажать на «Disabled» для отключения графической платы, либо выбрать нужную плату из списка.
  1. Сохранить изменения и перезагрузить компьютер.

Более подробно процесс разобран в этом видео

Чем отличаются интегрированная и дискретная

Дискретная видеокарта – отдельная плата расширения, которая подключается в специальный слот. Что значит это в практическом плане?

Читайте также:  Как почистить системный блок от пыли в домашних условиях

Физические размеры девайса, как правило, ограничены только внутренним пространством корпуса. Так как существуют внушительных размеров корпуса формата Big Tower, ничто не мешает разработчикам создать здоровенную «бандуру», внушающую уважение уже одними габаритами.

Зачем это надо? Чем больше микросхема, тем больше логических блоков можно реализовать на ее основе, сделав устройство мощнее. Хотя, конечно, конструкторы не сильно перегибают в этом плане, стараясь оптимизировать размеры до приемлемых характеристик.

Тем не менее, мощная видео плата сильно греется в процессе работы, поэтому ее комплектуют или тремя кулерами, или системой жидкостного охлаждения.

Менее мощные устройства оборудованы двумя или одним кулером. Все они, как правило, по характеристикам превосходят интегрированные графические ускорители.

Исключением можно считать только бюджетные видеокарты, у которых вместо кулера мощный радиатор. Впрочем, и стоят они обычно недорого.

diskretnaya-karta-bez-kulera.jpg Цена же за топовый графический ускоритель может достигать пары тысяч долларов.

К преимуществам дискретной видеокарты следует отнести, в первую очередь, высокую мощность и большую адаптированность к разгону. Кроме того, компьютер с такой видеокартой проще усовершенствовать – достаточно купить более мощный девайс и установить вместо предыдущего.

Интегрированная же видеокарта меняется вместе с процессором. Если модель материнской платы, на которой был установлен процессор, слишком устарела, можно попросту не найти новый «камень» под используемый слот. Покупать же б/у – то же самое, что брать кота в мешке: неизвестно, как он эксплуатировался и сколько еще проработает.

К недостаткам дискретной видеокарты следует отнести шум при работе, издаваемый кулерами. Кроме того, мощные девайсы крайне прожорливы в плане энергопотребления и часто требуют подключения дополнительного питания. Это тянет за собой покупку более мощного БП в случае апгрейда, если старый не справляется с возрастающей нагрузкой.

Еще больше информации и детальнее об этом можете почитать в посте «Что такое дискретная видеокарта в компьютере»

Благодаря мощности, такой вариант идеален для геймеров – если характеристики графического чипа позволяют, можно запускать самые свежие игрушки с высоким качеством графики.

Менее актуально для поклонников онлайн-игр: участие в таком проекте – обычно марафон продолжительностью несколько лет, а иногда и десятилетий (в «Линейку» и «Вовку» до сих пор играют, как ни странно), при этом системные требования во время апдейтов если и увеличиваются, то незначительно.

video-graficheskaya-karta-asus-730.jpg Разработчики же синглплеерных игр извращаются с библиотеками DirectX и прочими графическими компонентами, пытаясь перещеголять друг друга в плане графики, часто в ущерб сюжету и прочим непременным атрибутам хорошей игры.

Те, кто к геймингу равнодушен, используют мощные графические карты для работы: обработки изображений и фотографий, 3D моделирования, создания анимации, монтажа и обработки видеороликов.

Мощная карта нужна любому видеоблогеру или стримеру, не обязательно ведущему игровые трансляции: рендеринг или потоковая передача видео, весьма требовательны к производительности графического ускорителя.

Главные отличия видеоадаптеров

Основное отличие интегрированной видеокарты от дискретной – это пропускная способность шины и количество ядер Cuda. Во встроенных моделях нет мощных технологий и фильтров для сглаживания, поэтому сложная трехмерная графика будет воспроизводиться очень тяжело или вообще не запустится.

Пропускная способность дискретной модели в десятки раз выше, чем у интегрированной. Видеокарта Intel HD или AMD Radeon не сможет воспроизвести трехмерную игру нового поколения. Кроме того, дискретные модели видеоадаптеров стоят намного дороже бюджетных вариантов интегрированных видеокарт.

Аргумент в пользу дискретной графики

За дискретную графику говорит её производительность. Все, кроме видеокарт начального класса, имеют гораздо более мощный GPU, чем интегрированные в процессоры. Более того, отдельная видеокарта обеспечит GPU выделенным пулом высокоскоростной памяти. Интегрированный же GPU должен довольствоваться совместным использованием системной памяти и шины данных. Обычно с дискретной картой можно выставить настройки графики в играх выше, чем с интегрированными решениями.

Есть и другие преимущества от использования дискретных видеокарт. На видеокартах Nvidia текущего поколения пользователи могут задействовать фирменные технологии Shadowplay и PhysX. ShadowPlay оптимизирует использование движков видеокодирования, встроенных в графические процессоры NVIDIA, для записи и потокового вещания игр в режиме реального времени, с незначительным воздействием на частоту кадров. Это ключевая особенность портативного игрового устройства Nvidia Shield.

PhysX является фирменной технологией моделирования физики, которая заставляет объекты в играх вести себя более приближённо к реальности. PhysX поддерживается далеко не всеми играми, но может иметь огромное визуальное воздействие на поддерживаемые.

Игры — не единственные приложения, которые извлекают пользу от производительности дискретного GPU. Графические процессоры от AMD и Nvidia состоят из тысяч процессоров, которые могут выполнять несколько операций одновременно. Любое приложение может получить прирост скорости от такой параллельной обработки, будь то программы редактирования изображений, как Photoshop, шифрования данных или проекты распределённых вычислений, как Folding @ Home или SETI @ Home.

Дискретные видеокарты могут ускорить добычу криптографической валюты Bitcoins, Litecoins и прочих. Майнеры скупили последние видеокарты от AMD, поскольку архитектура Radeon здесь оказалась более эффективной, чем процессоры Intel и видеокарты Nvidia. Где процессор Intel Haswell Core i7-4770K способен переработать около 93 тыс. хэшей в секунду, AMD Radeon R9 290X делает около 880 тыс. хэшей в секунду.

Nvidia

Если у вас установлена карта от Нвидиа, то переключить интегрированную видеокарту на дискретную на ноутбуке можно с помощью утилиты «Control Center». Изначально она устанавливается вместе с драйверами, но если ее нет, то надо обновить драйвера и она у вас появится.

Утилита автоматически встраивается в контекстное меню и открыть ее можно одним щелчком.

  • Щелкните правой мышкой по любому свободному пространству на рабочем столе и выберите пункт «Nvidia».

Отобразится окно, в котором необходимо:

  1. С левой стороны панели перейти в меню «Параметры 3D»;
  2. Далее в «Управление параметрами»;
  3. Далее выберите из списка приложение, которое должно запускаться с внешней карты; Если в списке его нет, то щелкните на «Добавить» и найдите его вручную.

Процесс переключения всегда один и не зависит, как от фирмы производителя вашего ноутбука, будь то, Asus, Acer, Samsung, HP, Dell inspiron, Леново и п.р, так и от версии Windows (7, 8 или 10).

im244-320px-Gigabyte_GV-NX66T128D_Rev._1.0.jpgNvidia GeForce 6600GT (производитель Gigabyte)im244-Geforce_4200.jpgGeForce4 Ti 4200

Видеока́рта (также видеоада́птер, графический ада́птер, графи́ческая пла́та, графи́ческая ка́рта, графи́ческий ускори́тель) — устройство, преобразующее графический образ, хранящийся как содержимое памятикомпьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в слот расширения, универсальный либо специализированный (AGP, PCI Express)[1]. Также широко распространены и встроенные (интегрированные) в системную платувидеокарты — как в виде отдельного чипа, так и в качестве составляющей части северного мостачипсета или ЦПУ; в этом случае устройство, строго говоря, не может быть названо видеокартой.

Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера[2]. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX и Vulkan на аппаратном уровне[3]. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.

История

im244-320px-MDA_IBM_1501985.jpgпервая в истории видеокарта IBMMDA (Monochrome Display Adapter)

Первый графический адаптер MDA (англ. Monochrome Display Adapter) был выпущен IBM в 1981 году для IBM PC. Он поддерживал разрешение 720х350 пикселей и работал только в текстовом режиме, выводя на экран до 25 строк. Никакой цветовой или графической информации он передавать не мог[4]. Фирма Hercules в 1982 году выпустила дальнейшее развитие адаптера MDA, видеоадаптер HGC (англ. Hercules Graphics Controller), который поддерживал две графические страницы, но всё же не позволял работать с цветом.

Первой цветной видеокартой стала CGA (англ. Color Graphics Adapter), выпущенная IBM в 1981 году. Она могла работать либо в текстовом режиме, отображая 16 цветов символов, либо в графическом, выводя четырёхцветные изображения в низком (320×200) разрешении. Режим высокого разрешения 640×200 был монохромным. В развитие этой карты, в 1984 году, появился EGA (англ. Enhanced Graphics Adapter) — улучшенный графический адаптер, с расширенной до 64 цветов палитрой[4]. Разрешение было улучшено до 640×350. Особенностью данных адаптеров было то, что они использовали слот шины ISA, имеющий открытую архитектуру, в связи с чем пользователь мог самостоятельно менять видеокарту на желаемую[4].

Стоит заметить, что интерфейсы с монитором всех этих типов видеоадаптеров были цифровые, MDA и HGC передавали только светится или не светится точка и дополнительный сигнал яркости для атрибута текста «яркий», аналогично CGA по трём каналам (красный, зелёный, синий) передавал основной видеосигнал, и мог дополнительно передавать сигнал яркости (всего получалось 16 цветов), EGA имел по две линии передачи на каждый из основных цветов, то есть каждый основной цвет мог отображаться с полной яркостью, 2/3 или 1/3 от полной яркости, что и давало в сумме максимум 64 цвета.

В 1987 году появляется новый графический адаптер MCGA (англ. Multicolor Graphics Adapter), в котором инженеры IBM сумели увеличили текстовый режим до 50 строк, а графический до 262 144 цветов, в связи с чем возникла необходимость перейти с цифрового на аналоговый сигнал для монитора. Потом IBM пошла ещё дальше и несколько месяцев спустя выпустила VGA (англ. Video Graphics Array), ставшей фактическим стандартом видеоадаптеров на многие годы. В графическом режиме её разрешение составляло 640×480 и было примечательно тем, что соотношение числа пикселей по горизонтали и вертикали совпадало со стандартным (для того времени) соотношением сторон экрана монитора — 4:3. С 1991 года появилось понятие SVGA (Super VGA) — расширение VGA с добавлением более высоких режимов. Число одновременно отображаемых цветов при разрешении 800х600 увеличивается до 65 536 (High Color, 16 бит) и 16 777 216 (True Color, 24 бита)[4]. Из сервисных функций появляется поддержка VBE (VESA BIOS Extention — расширение BIOS стандарта VESA). SVGA воспринимается как фактический стандарт видеоадаптера где-то с середины 1992 года, после принятия ассоциацией VESA стандарта VBE версии 1.0. До того момента практически все видеоадаптеры SVGA были несовместимы между собой.

Графический пользовательский интерфейс, появившийся во многих операционных системах, стимулировал новый этап развития видеоадаптеров[4]. Появляется понятие «графический ускоритель» (graphics accelerator). Это видеоадаптеры, которые производят выполнение некоторых графических функций на аппаратном уровне. К числу этих функций относятся: перемещение больших блоков изображения из одного участка экрана в другой (например, при перемещении окна), заливка участков изображения, рисование линий, дуг, шрифтов, поддержка аппаратного курсора и т. п. Прямым толчком к развитию столь специализированного устройства явилось то, что графический пользовательский интерфейс, несомненно, удобен, но его использование требует от центрального процессора немалых вычислительных ресурсов, и современный графический ускоритель как раз и призван снять с него львиную долю вычислений по окончательному выводу изображения на экран.

3D-ускорители

Сам термин 3D-ускоритель формально означает дополнительную плату расширения, выполняющую вспомогательные функции ускорения формирования трёхмерной графики. Отображение результата в виде 2D изображения и передача её на монитор не является задачей 3D-ускорителя. В современном понимании 3D-ускорители в виде отдельного устройства практически не встречаются. Почти любая (кроме узкоспециализированных) современная видеокарта, в том числе и современные интегрированные графические адаптеры в составе процессоров и системной логики, выполняют аппаратное ускорение отображения двухмерной и трёхмерной графики.

Аппаратное ускорение формирования графических изображений изначально входило в характеристики многих персональных компьютеров, однако первая модель IBM PC штатно располагала только текстовыми режимами и не имела возможности отображать графику. Однако первые видеокарты для IBM PC-совместимых компьютеров с поддержкой аппаратного ускорения 2D- и 3D-графики появились достаточно рано. Так IBM ещё в 1984 начала производство и продажу видеокарт стандарта PGC. PGC была создана для профессионального применения, выполняла аппаратное ускорение построения 2D- и 3D-примитивов и являлась решением в первую очередь для CAD-приложений. Правда IBM PGC имела крайне высокую стоимость. Цена этой видеокарты была гораздо выше самого компьютера. Поэтому существенного распространения такие решения не получили. Справедливости ради стоит сказать что на рынке профессиональных решений были видеокарты и 3D-ускорители других производителей.

im244-320px-DIAMONDSTEALTH3D2000-top.JPGВидеокарта Diamond Stealth3D 2000 на чипе S3 ViRGE/325

Распространение доступных 3D-ускорителей для IBM PC-совместимых компьютеров началось в 1994 году. Развитие графических пользовательских интерфейсов, и в первую очередь операционных систем с графическими пользовательскими интерфейсами, сказалось на развитие видеокарт в целом. От видеокарт требуется быстрое и качественно отображение в высоких разрешениях с большей глубиной цвета. Помимо этого чтобы сократить время реакции действий пользователя и разгрузить центральный процессор компьютера от обработки большого количества графики в составе некоторых видеокарт появляются функции ускорения 2D графики. Так, с ростом популярности Microsoft Windows некоторые графические адаптеры реализуют функции аппаратного отображения курсора, аппаратной заливки областей экрана, аппаратного копирования и переноса областей экрана (в том числе функции аппаратного скроллинга), а также аппаратное отображение 2D примитивов. Развитием этого направления стало появление функций аппаратного отображения 3D примитивов. Первой видеокартой с поддержкой аппаратного ускорения отображения 3D-графики стала Matrox Impression Plus выпущенная в 1994 году (использовала чип Matrox Athena). Позже в этом же году Matrox представляет новый чип Matrox Storm и видеокарту на основе его Matrox Millennium. Matrox Millennium 1994 года стала первой видеокартой весьма успешной серии Millennium. Видеокарты Millennium выпускались до середины 2000-х годов.

im244-320px-Dedge3d.jpgВидеокарта Diamond EDGE 3D 2120 на чипе NVIDIA NV1

В 1995 году уже несколько компаний выпускают новые графические чипы с поддержкой аппаратного ускорения формирования 3D-графики. Так Matrox выпускает MGA-2064W, Number Nine Visual Technology отмечается выпуском графического процессора Imagine 128-II, Yamaha представляет чипы YGV611 и YGV612, компания 3DLabs выпускает Glint 300SX, а Nvidia — NV1 (который так же выпускается в рамках соглашения с SGS-THOMSON под именем STG2000). В этом же году на основе этих решений выходит большое число видеокарт от различных производителей с поддержкой ускорения 3D-графики.

im244-320px-KL_Diamond_Monster3D_Voodoo_1.jpgКарта Diamond Monster 3D на чипсете Voodoo Graphics

Настоящим прорывом на рынке 3D-ускорителей и видеокарт с аппаратным ускорением 3D-графики стал 1996 год. Именно этот год стал годом массового внедрения и популяризации аппаратной 3D-графики на IBM PC-совместимых компьютерах. В этому году появляются новые графические решения от 3DLabs, Matrox, ATI Technologies, S3, Rendition, Chromatic Research, Number Nine Visual Technology, Trident, PowerVR. И хотя на основе этих графических процессоров в этом году выходит множество как 3D-ускорителей, так и полноценных видеокарт с функций ускорения 3D-графики, главным событием становится выпуск 3D-ускорителей на основе набора чипов 3DfxVoodoo Graphics. Компания 3dfx Interactive до этого производившая специализированные 3D-ускорители для аркадных автоматов представила набор чипов для рынка IBM PC-совместимых компьютеров. Скорость и качество рендеринга трёхмерных сцен выполненных картами Voodoo Graphics были на уровне современных игровых автоматов, и большинство производителей видеокарт начали выпуск 3D-ускорителей на основе набора Voodoo Graphics, а вскоре и большинство производителей компьютерных игр поддержали Voodoo Graphics и выпустили новые игры для IBM PC-совместимых компьютеров с совершенно новым уровнем 3D-графики. Произошёл взрыв интереса к 3D-играм и соответственно к 3D-ускорителям.

Игровые видеоускорители

Игровые видеоускорители — видеокарты, ориентированные на ускорение 3D-графики в играх.

C 1998 года развивается (компания 3dfx, карта Voodoo2) технология SLI (англ. Scan Line Interleave — чередование строчек), позволяющая использовать мощности нескольких соединённых между собой видеокарт для обработки трёхмерного изображения. См. NVIDIA SLI и ATI CrossFire

Профессиональные видеоускорители

Профессиональные графические карты — видеокарты, ориентированные на работу в графических станциях и использования в математических и графических пакетах 2D- и 3D-моделирования, на которые ложится значительная нагрузка при расчёте и прорисовке моделей проектируемых объектов.

Ядра профессиональных видеоускорителей основных производителей, AMD и NVIDIA, «изнутри» мало отличаются от их игровых аналогов. Они давно унифицировали свои GPU и используют их в разных областях. Именно такой ход и позволил этим фирмам вытеснить с рынка компании, занимавшиеся разработкой и продвижением специализированных графических чипов для профессиональных применений.

Особое внимание уделяется подсистеме видеопамяти, поскольку это — особо важная составляющая профессиональных ускорителей, на долю которой выпадает основная нагрузка при работе с моделями гигантского объёма; В частности, кроме заметно больших объёмов памяти у соотносимых по производительности карт, у видеокарт профессионального сегмента может использоваться ECC-память[5].

Отдельно стоит продукция фирмы Matrox, чьи узкоспециализированные ускорители по состоянию на 2017 год применялись для работ по кодированию видео, обработке TV-сигнала и работ со сложной 2D-графикой.

Устройство

Современная видеокарта состоит из следующих частей:

Графический процессор

Графический процессор (Graphics processing unit (GPU) — графическое процессорное устройство) занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

Видеопамять

Кроме шины данных, второе узкое место любого видеоадаптера — это пропускная способность (англ. bandwidth) памяти самого видеоадаптера. Причём изначально проблема возникла даже не столько из-за скорости обработки видеоданных (это сейчас часто стоит проблема информационного «голода» видеоконтроллера, когда он данные обрабатывает быстрее, чем успевает их читать/писать из/в видеопамять), сколько из-за необходимости доступа к ним со стороны видеопроцессора, центрального процессора и RAMDAC. Дело в том, что при высоких разрешениях и большой глубине цвета для отображения страницы экрана на мониторе необходимо прочитать все эти данные из видеопамяти и преобразовать в аналоговый сигнал, который и пойдёт на монитор, столько раз в секунду, сколько кадров в секунду показывает монитор. Возьмём объём одной страницы экрана при разрешении 1024×768 точек и глубине цвета 24 бит (True Color), это составляет 2,25 МБ. При частоте кадров 75 Гц необходимо считывать эту страницу из памяти видеоадаптера 75 раз в секунду (считываемые пикселы передаются в RAMDAC, и он преобразовывает цифровые данные о цвете пиксела в аналоговый сигнал, поступающий на монитор), причём ни задержаться, ни пропустить пиксел нельзя, следовательно, номинально потребная пропускная способность видеопамяти для данного разрешения составляет приблизительно 170 МБ/с, и это без учёта того, что необходимо и самому видеоконтроллеру писать и читать данные из этой памяти. Для разрешения 1600x1200x32 бит при той же частоте кадров 75 Гц номинально потребная пропускная составляет уже 550 МБ/с. Для сравнения, процессор Pentium II имел пиковую скорость работы с памятью 528 МБ/с. Проблему можно было решать двояко — либо использовать специальные типы памяти, которые позволяют одновременно двум устройствам читать из неё, либо ставить очень быструю память. О типах памяти и пойдёт речь ниже.

Прочее</th>

  • ТВ-тюнер
  • Корпус компьютера (Системный блок)

</td>modif.png Эта страница в последний раз была отредактирована 2 июня 2021 в 13:58. Используемые источники:

  • https://brit03.ru/ustrojstva/diskretnaya-videokarta.html
  • https://wiki2.org/ru/%d0%92%d0%b8%d0%b4%d0%b5%d0%be%d0%ba%d0%b0%d1%80%d1%82%d0%b0

</tr>

Рейтинг автора
5
Подборку подготовил
Андрей Ульянов
Наш эксперт
Написано статей
168
Ссылка на основную публикацию
Похожие публикации